What is QFT?

Mykola Dedushenko
Stony Brook University

July 2022 - Seattle - Snowmass
Plan

Introduction

Approaches to axiomatic QFT

Conclusion: need to update axioms?
Hundreds of references in the white paper 2203.08053

This is a review of the 70 years old subject
“Theoretical physics of today is technology of tomorrow.”

-Source???
“Theoretical physics of today is technology of tomorrow.”

Experimental

-Source???
“Theoretical physics of today is technology of tomorrow.”

Experimental

“Theoretical physics of today is experimental physics of tomorrow.”

-Source???
“Theoretical physics of today is technology of tomorrow.”

-Source???

“Experimental physics of today is experimental physics of tomorrow.”

“Mathematical physics of today is theoretical physics of tomorrow.”
“Theoretical physics of today is technology of tomorrow.”

“Experimental physics of today is theoretical physics of tomorrow.”

“Mathematical physics of today is experimental physics of years to come.”

“Mathematical physics of today is theoretical physics of decades to come.”
“Theoretical physics of today is technology of tomorrow.”

“Experimental physics of today is experimental physics of tomorrow.”

“Mathematical physics of today is theoretical physics of tomorrow.”

“Mathematics of today is technology of tomorrow.”

...
"Theoretical physics of today is technology of tomorrow."
-Source???

"Theoretical physics of today is experimental physics of tomorrow."
years to come

"Mathematical physics of today is theoretical physics of tomorrow."
decades to come

... Mathematics
Each of these fields can exist on their own.
Each of these fields can exist on their own.

Elimination of either one would affect others.
Each of these fields can exist on their own.

Elimination of either one would affect others.

Right approach - develop all at once.
Each of these fields can exist on their own.

Elimination of either one would affect others.

Right approach - develop all at once.

My interest: mathematical content of theories.
What is a “theory”?
What is a “theory”?

- (Logically self-consistent set of statements) \(\subset \) (Math)
What is a “theory”?

- (Logically self-consistent set of statements) C (Math)
- Sometimes lands onto a known subfield.
What is a “theory”?

- (Logically self-consistent set of statements) ∈ (Math)

- Sometimes lands onto a known subfield.

- Sometimes leads to new math.
Examples
Examples

Classical mechanics
Examples

Classical mechanics

Symplectic geometry
Examples

- Classical mechanics
- Symplectic geometry
- Electrodynamics
Examples

- Classical mechanics
- Symplectic geometry
- Electrodynamics
 - Analysis of PDE
 - Differential geometry
Examples

Classical mechanics
Symplectic geometry

Electrodynamics
Analysis of PDE
Differential geometry

General relativity
Examples

Classical mechanics
Symplectic geometry

General relativity
Riemannian geometry

Electrodynamics
Analysis of PDE
Differential geometry
Examples

Classical mechanics
Symplectic geometry

General relativity
Riemannian geometry

Electrodynamics
Analysis of PDE
Differential geometry

Quantum mechanics
Examples

Classical mechanics
Symplectic geometry

General relativity
Riemannian geometry

Electrodynamics
Analysis of PDE
Differential geometry

Quantum mechanics
Linear algebra
Functional analysis
QFT

???
QFT

More precisely:
More precisely:

- Particle theory
- Condensed matter
- String Theory
More precisely:

- Particle theory
- Condensed matter
- String Theory

But what is QFT?
(No such subfield in math)

New Math?
Worse: the complete consistent set of rules is not even known.
Worse: the complete consistent set of rules is not even known.

Currently investigating and expanding.

(See talk by Shu-Heng)
Worse: the complete consistent set of rules is not even known.

Currently investigating and expanding.
(See talk by Shu-Heng)

QFT is almost a century old subject!
Worse: the complete consistent set of rules is not even known.

Currently investigating and expanding.
(See talk by Shu-Heng)

QFT is almost a century old subject!
A number of definitions (systems of axioms) have been proposed over the years...
Worse: the complete consistent set of rules is not even known.

Currently investigating and expanding. (See talk by Shu-Heng)

QFT is almost a century old subject! A number of definitions (systems of axioms) have been proposed over the years...

Let us briefly review them.
Wightman's approach (50's)
Wightman's approach (50's)

Main objects are Wightman functions:
Wightman’s approach (50’s)

Main objects are Wightman functions: vevs of products of operator-valued distributions

$$\langle 0 | \varphi_1(x_1) \varphi_2(x_2) \ldots \varphi_n(x_n) | 0 \rangle \equiv W(x_1, \ldots, x_n)$$

Points in Lorentzian spacetime
Wightman's approach (50's)

Main objects are Wightman functions:

\[\langle 0 | \phi_1(x_1) \phi_2(x_2) \ldots \phi_n(x_n) | 0 \rangle \equiv W(x_1, \ldots, x_n) \]

Points in Lorentzian spacetime

Obey axioms:

Vevs of products of operator-valued distributions
Wightman's approach (50's)

Main objects are Wightman functions: vevs of products of operator-valued distributions

\[\langle 0 | \varphi_1(x_1) \varphi_2(x_2) \ldots \varphi_n(x_n) | 0 \rangle \equiv W(x_1, \ldots, x_n) \]

Points in Lorentzian spacetime

Obey axioms:

(W0) Representation th' of Poincare group, spectral condition, uniqueness of vacuum;

(W1) Fields are operator-valued tempered distributions;

(W2) Poincare-covariance of fields;

(W3) Locality (microcausality).
Wightman's approach (50's)

Main objects are Wightman functions:

\[\langle 0 | \phi_1(x_1) \phi_2(x_2) \ldots \phi_n(x_n) | 0 \rangle \equiv W(x_1, \ldots, x_n) \]

Points in Lorentzian spacetime

Obey axioms:

(W0) Representation th' y of Poincare group, spectral condition, uniqueness of vacuum;

(W1) Fields are operator-valued tempered distributions;

(W2) Poincare-covariance of fields;

(W3) Locality (microcausality).

QFT := (W0)-(W3) + cyclicity of the vacuum
Wightman's approach (50's)

Main objects are Wightman functions:

\[
\langle 0 | \varphi_1(x_1) \varphi_2(x_2) \ldots \varphi_n(x_n) | 0 \rangle \equiv W(x_1, \ldots, x_n)
\]

Points in Lorentzian spacetime

Obey axioms:

(W0) Representation theory of Poincare group, spectral condition, uniqueness of vacuum;

(W1) Fields are operator-valued tempered distributions;

(W2) Poincare-covariance of fields;

(W3) Locality (microcausality).

QFT := (W0)-(W3) + cyclicity of the vacuum

\[
\text{Span of } \varphi_1(f_1) \ldots \varphi_n(f_n) | 0 \rangle \text{ approximates all states}
\]
Osterwalder-Schrader (50’s)
Osterwalder-Schrader (50's)

Schwinger functions – Euclidean correlators:
Osterwalder-Schrader (50’s)

Schwinger functions – Euclidean correlators:

$$\langle \phi(x_1) \phi(x_2) \ldots \phi(x_n) \rangle \equiv S(x_1, \ldots, x_n)$$
Osterwalder-Schrader (50’s)

Schwinger functions — Euclidean correlators:

\[\langle \varphi(x_1) \varphi(x_2) \ldots \varphi(x_n) \rangle = S(x_1, \ldots, x_n) \]
Osterwalder-Schrader (50's)

Schwinger functions — Euclidean correlators:

\[\langle \varphi(x_1) \varphi(x_2) \ldots \varphi(x_n) \rangle \equiv S(x_1, \ldots, x_n) \]

(OS0) Temperedness;
(OS1) Euclidean covariance;
(OS2) Reflection positivity;
(OS3) (anti)symmetry under permutations;
(OS4) Cluster decomposition;

Statistical objects
Osterwalder-Schrader (50’s)

Schwinger functions – Euclidean correlators:

\[\langle \varphi(x_1) \varphi(x_2) \ldots \varphi(x_n) \rangle \equiv S(x_1, \ldots, x_n) \]

(0S0) Temperedness;
(0S1) Euclidean covariance;
(0S2) Reflection positivity;
(0S3) (anti)symmetry under permutations;
(0S4) Cluster decomposition;

\((W) \Rightarrow (0S) \); \((0S) + \text{growth condition} \Rightarrow (W) \)

Statistical objects
Osterwalder-Schrader (50's)

Schwinger functions — Euclidean correlators:
\[
\langle \varphi(x_1) \varphi(x_2) \ldots \varphi(x_n) \rangle \equiv S(x_1, \ldots, x_n)
\]

(OS0) Temperedness;
(OS1) Euclidean covariance;
(OS2) Reflection positivity;
(OS3) (anti)symmetry under permutations;
(OS4) Cluster decomposition;

(W) \Rightarrow (OS); (OS)+growth condition \Rightarrow (W)

Glimm-Jaffe (GJ) version formalizes:
Osterwalder-Schrader (50's)

Schwinger functions - Euclidean correlators:
\[
\langle \phi(x_1) \phi(x_2) \ldots \phi(x_n) \rangle \equiv S(x_1, \ldots, x_n)
\]

(OS0) Temperedness; (OS1) Euclidean covariance; (OS2) Reflection positivity;
(OS3) (anti)symmetry under permutations; (OS4) Cluster decomposition;

(W) \Rightarrow (OS); (OS)+growth condition \Rightarrow (W)

Glimm-Jaffe (GJ) version formalizes:
\[
S[f] = \langle e^{\phi[f]} \rangle \equiv \int e^{\phi[f]} d\mu
\]
Osterwalder-Schrader (50's)

Schwinger functions — Euclidean correlators:
\[\langle \phi(x_1) \phi(x_2) \ldots \phi(x_n) \rangle \equiv S(x_1, \ldots, x_n) \]

(OS0) Temperedness;
(OS1) Euclidean covariance;
(OS2) Reflection positivity;
(OS3) (anti)symmetry under permutations;
(OS4) Cluster decomposition;

(W) \Rightarrow (OS);
(OS)+growth condition \Rightarrow (W)

Glimm-Jaffe (GJ) version formalizes:
\[S[f] = \langle e^{\phi[f]} \rangle \equiv \int e^{\phi[f]} \, d\mu \]

Measure on the space of distributions

Statistical objects
Osterwalder-Schrader (50’s)

Schwinger functions — Euclidean correlators:
\[\langle \varphi(x_1) \varphi(x_2) ... \varphi(x_n) \rangle \equiv S(x_1, ..., x_n) \]

(OS0) Temperedness; (OS1) Euclidean covariance; (OS2) Reflection positivity;
(OS3) (anti)symmetry under permutations; (OS4) Cluster decomposition;

(W) \implies (OS); (OS)+growth condition \implies (W)

Glimm-Jaffe (GJ) version formalizes:
\[S[f] = \langle e^{\varphi[f]} \rangle \equiv \int e^{\varphi[f]} d\mu \]

Analyticity; regularity (growth bound); Euclidean covariance;
reflection positivity; ergodicity of time translations.

Measure on the space of distributions

Statistical objects
Osterwalder-Schrader (50’s)

Schwinger functions – Euclidean correlators:

\[
\langle \varphi(x_1) \varphi(x_2) \ldots \varphi(x_n) \rangle \equiv S(x_1, \ldots, x_n)
\]

(OS0) Temperedness;
(OS1) Euclidean covariance;
(OS2) Reflection positivity;
(OS3) (anti)symmetry under permutations;
(OS4) Cluster decomposition;

(W) \implies (OS);
(OS)+growth condition \implies (W)

Glimm-Jaffe (GJ) version formalizes:

\[
S[f] = \langle e^{\varphi[f]} \rangle \equiv \int e^{\varphi[f]} d\mu
\]

Analyticity; regularity (growth bound); Euclidean covariance;
reflection positivity; ergodicity of time translations.

(GJ) \implies (OS)+growth condition

Measure on the space of distributions

Statistical objects
Osterwalder-Schrader (50’s)

Schwinger functions — Euclidean correlators:
\[\langle \varphi(x_1) \varphi(x_2) \ldots \varphi(x_n) \rangle \equiv S(x_1, \ldots, x_n) \]

- (OS0) Temperedness;
- (OS1) Euclidean covariance;
- (OS2) Reflection positivity;
- (OS3) (anti)symmetry under permutations;
- (OS4) Cluster decomposition;

\[(W) \Rightarrow (OS); \quad (OS) + \text{growth condition} \Rightarrow (W)\]

Glimm-Jaffe (GJ) version formalizes:
\[S[f] = \langle e^{\varphi[f]} \rangle \equiv \int e^{\varphi[f]} d\mu \]

Analyticity; regularity (growth bound); Euclidean covariance; reflection positivity; ergodicity of time translations.

\[(G-J) \Rightarrow (OS) + \text{growth condition}\]

Ed Nelson’s version: also probabilistic, requires Markov property.
Osterwalder-Schrader (50's)

Schwinger functions — Euclidean correlators:
\[\langle \phi(x_1) \phi(x_2) \ldots \phi(x_n) \rangle \equiv S(x_1, \ldots, x_n) \]

- (OS0) Temperedness;
- (OS1) Euclidean covariance;
- (OS2) Reflection positivity;
- (OS3) (anti)symmetry under permutations;
- (OS4) Cluster decomposition;

\[(W) \Rightarrow (OS); \quad (OS) + \text{growth condition} \Rightarrow (W) \]

Glimm-Jaffe (GJ) version formalizes: $S[f] = \langle e^{\phi[f]} \rangle \equiv \int e^{\phi[f]} d\mu$

Analyticity; regularity (growth bound); Euclidean covariance; reflection positivity; ergodicity of time translations.

\[(GJ) \Rightarrow (OS) + \text{growth condition} \]

Ed Nelson's version: also probabilistic, requires Markov property.

\[(N) \Rightarrow (W). \quad (\text{Nelson's reconstruction thm}) \]
Such notion of QFT is quite limited, yet rich enough...
Such notion of QFT is quite limited, yet rich enough...

Can prove:
Such notion of QFT is quite limited, yet rich enough...

Can prove:

\[W(x_1, \ldots, x_k) \rightarrow W(x_{i_1}, x_{i_2}) \cdot W(x_{k_1}, x_{k_2}) \]
Such notion of QFT is quite limited, yet rich enough...

Can prove:

\[W(x_1, \ldots, x_k) \rightarrow W(x_1, \ldots, x_k) W(x_{k+1}, \ldots, x_n) \]
Such notion of QFT is quite limited, yet rich enough...

Can prove:

\[W(x_1, \ldots, x_k) \rightarrow W(x_1, \ldots, x_k) W(x_{k+1}, \ldots, x_n) \]
Such notion of QFT is quite limited, yet rich enough...

Can prove:

- Cluster decomposition
- CPT
- Analytic continuation
- Spin-statistics

\[W(x_1, \ldots, x_k) \rightarrow W(x_1, \ldots, x_k) W(x_{2k-1}, x) \]
Such notion of QFT is quite limited, yet rich enough...

Can prove:

- Cluster decomposition
- CPT
- Analytic continuation
- Reconstruction
- Spin-statistics
- Reconstruction

\[W(x_1, \ldots, x_n) \rightarrow W(x_1, \ldots, x_k) W(x_{k+1}, \ldots, x_n) \]
Such notion of QFT is quite limited, yet rich enough...

Can prove:

- Cluster decomposition
- CPT
- Spectral condition
- Reconstruction
- Analytic continuation
- Spin-statistics

\[W(x_1, \ldots, x_n) \rightarrow W(x_1, \ldots, x_k) \cdot W(x_{k+1}, \ldots, x_n) \]
Limitations
Limitations

(1) This doesn't really tell us what a QFT is, only what the answer should look like.
Limitations

(1) This doesn’t really tell us what a QFT is, only what the answer should look like.
I.e., axioms are extremely non-constructive!
Limitations

(1) This doesn't really tell us what a QFT is, only what the answer should look like.

I.e., axioms are extremely non-constructive!

A priori, unclear if they can be satisfied at all.
Limitations

(1) This doesn't really tell us what a QFT is, only what the answer should look like.
 I.e., axioms are extremely non-constructive!
 A priori, unclear if they can be satisfied at all.

(2) Also lacking extended operators (probably fixable),
 no degenerate vacua.
Limitations

(1) This doesn't really tell us what a QFT is, only what the answer should look like.
 I.e., axioms are extremely non-constructive!
 A priori, unclear if they can be satisfied at all.

(2) Also lacking extended operators (probably fixable), no degenerate vacua.

How to overcome (1)?
Limitations

(1) This doesn’t really tell us what a QFT is, only what the answer should look like.
I.e., axioms are extremely non-constructive!
A priori, unclear if they can be satisfied at all.

(2) Also lacking extended operators (probably fixable), no degenerate vacua.

How to overcome (1)?

(A) “Solve axioms” — Bootstrap!
(B) Constructive field theory.
Limitations

(1) This doesn’t really tell us what a QFT is, only what the answer should look like.

I.e., axioms are extremely non-constructive!

A priori, unclear if they can be satisfied at all.

(2) Also lacking extended operators (probably fixable), no degenerate vacua.

How to overcome (1)?

(A) “Solve axioms” — Bootstrap!
(B) Constructive field theory.

Especially powerful with conformal invariance — conformal bootstrap.
(see Silviu’s talk)
Constructive QFT
Constructive QFT

Basic philosophy: Construct path integral rigorously → Check the axioms (OS or GJ or W)
Constructive QFT

Basic philosophy: Construct path integral rigorously

Very active in the 70s and 80s.

Check the axioms (OS or GJ or W)
Constructive QFT

Basic philosophy: Construct path integral rigorously
Check the axioms (OS or GJ or W)

Very active in the 70s and 80s.

Main achievements:
Scalar QFT in 2d with arbitrary potentials;
ϕ^4 in three dimensions;
ϕ^4 in >4 dimensions is free; ($D=4$ is recent)
Yukawa models in 2D and 3D;
Gross-Neveu;
Thirring model;
Gauge theories in 2D and 3D (via lattice);
Partial success in 4D YM.
...

Constructive QFT

Basic philosophy: Construct path integral rigorously

Check the axioms (OS or GJ or W)

Very active in the 70s and 80s.

Main achievements:
- Scalar QFT in 2d with arbitrary potentials;
- ϕ^4 in three dimensions;
- ϕ^4 in >4 dimensions is free; ($D=4$ is recent)
- Yukawa models in 2D and 3D;
- Gross-Neveu;
- Thirring model;
- Gauge theories in 2D and 3D (via lattice);
- Partial success in 4D YM.

...
Constructive QFT

Basic philosophy: Construct path integral rigorously

Very active in the 70s and 80s.

Main achievements:
- Scalar QFT in 2d with arbitrary potentials;
- ϕ^4 in three dimensions;
- ϕ^4 in > 4 dimensions is free; $(D=4$ is recent$)$
- Yukawa models in 2D and 3D;
- Gross-Neveu;
- Thirring model;
- Gauge theories in 2D and 3D (via lattice);
- Partial success in 4D YM.

Very technical field

Biggest question: Gap in 4D YM (Millenium problem)
Algebraic QFT (AQFT)
Algebraic QFT (AQFT)
(Started in late 50's)
Algebraic QFT (AQFT)
(Started in late 50's)

Net of operator algebras: $\mathcal{A}(U)$ U - causally complete
Algebraic QFT (AQFT)
(Started in late 50's)

Net of operator algebras: \(\mathcal{A}(U) \)
\(U \) - causally complete
(Usually C* or von Neumann, many approaches!)
Algebraic QFT (AQFT)
(Started in late 50's)

Net of operator algebras: \(\mathcal{A}(U) \) \(U \) - causally complete
(Usually C* or von Neumann, many approaches!)

\[U_1 \subseteq U_2 \]
\[\mathcal{A}(U_1) \hookrightarrow \mathcal{A}(U_2) \]
Algebraic QFT (AQFT)
(Started in late 50's)

Net of operator algebras: \(\mathcal{A}(U) \) \(U \) - causally complete
(Usually C* or von Neumann, many approaches!)

\[U_1 \subset U_2 \quad \mathcal{A}(U_1) \hookrightarrow \mathcal{A}(U_2) \] (Isotony)
Algebraic QFT (AQFT)
(Started in late 50's)

Net of operator algebras: \(\mathcal{A}(U) \) \(U \) - causally complete
(Usually C* or von Neumann, many approaches!)

- \(U_1 \subset U_2 \)
 \[\mathcal{A}(U_1) \hookrightarrow \mathcal{A}(U_2) \] (Isotony)

- \([\mathcal{A}(U_1), \mathcal{A}(U_2)] = 0 \) inside \(\mathcal{A}(U) \) (Locality)

- \(U_1 \) and \(U_2 \) spacelike separated

- \(U_1 \) and \(U_2 \) Cauchy slice
 \[\mathcal{A}(U_1) \cong \mathcal{A}(U_2) \] (Time slice axiom)
Different approaches
Different approaches

(Araki-Haag-Kastler)
Different approaches

(Araki-Haag-Kastler)

Flat Minkowski space, Poincare inv, spectral condition.
Different approaches

(Araki-Haag-Kastler)

(Brunetti-Fredenhagen-Verch-...)

Flat Minkowski space, Poincare inv,
spectral condition.
Different approaches

(Araki-Haag-Kastler) Flat Minkowski space, Poincare inv, spectral condition.

(Brunetti-Fredenhagen-Verch...) Curved Lorentzian, locality and covariance, LCQFT
Different approaches

(Araki-Haag-Kastler)

Flat Minkowski space, Poincare inv, spectral condition.

(Brunetti-Fredenhagen-Verch-...)

Curved Lorentzian, locality and covariance, LCQFT

(Buchholz-Fredenhagen)
Different approaches

(Araki-Haag-Kastler) Flat Minkowski space, Poincare inv, spectral condition.

(Brunetti-Fredenhagen-Verch-...) Curved Lorentzian, locality and covariance, LCQFT

(Buchholz-Fredenhagen) Dynamical C-star algebras built from the action
Different approaches

(Araki-Haag-Kastler)

Brunetti-Fredenhagen-Verch...

(Buchholz-Fredenhagen)

(Buetschs-Fredenhagen-Rejzner...)

Flat Minkowski space, Poincare inv, spectral condition.

Curved Lorentzian, locality and covariance, LCQFT

Dynamical C-star algebras built from the action
Different approaches

(Araki-Haag-Kastler) Flat Minkowski space, Poincare inv, spectral condition.

(Brunetti-Fredenhagen-Verch-...) Curved Lorentzian, locality and covariance, LCQFT

(Buchholz-Fredenhagen) Dynamical C-star algebras built from the action

(Duetschs-Fredenhagen-Rejzner-...) Perturbative AQFT
Different approaches

(Araki-Haag-Kastler) Flat Minkowski space, Poincare inv, spectral condition.

(Brunetti-Fredenhagen-Verch-...) Curved Lorentzian, locality and covariance, LCQFT

(Buchholz-Fredenhagen) Dynamical C-star algebras built from the action

(Duetschs-Fredenhagen-Rejzner-...) Perturbative AQFT

(Benini-Schenkel-...)
Different approaches

(Araki-Haag-Kastler) Flat Minkowski space, Poincare inv, spectral condition.

(Brunetti-Fredenhagen-Verch-...) Curved Lorentzian, locality and covariance, LCQFT

(Buchholz-Fredenhagen) Dynamical C-star algebras built from the action

(Duetschs-Fredenhagen-Rejzner-...) Perturbative AQFT

(Benini-Schenkel-...) Homotopy AQFT (fixes problems of AQFT in gauge theories)
One more AQFT approach

(Costello-Gwilliam) Factorization algebras.

(Became popular among mathematicians recently)
Advantages:
Advantages:

More “conceptual”; bounded operators;
sort of answers the q. “What is QFT?”
Advantages:

- More “conceptual”; bounded operators;
- sort of answers the q. “What is QFT?”
- Allows to prove general facts. Entanglement properties.
- Structural theory. Superselection sectors.
Advantages:

More “conceptual”; bounded operators; sort of answers the q. “What is QFT?”

Disadvantages:
Advantages: More “conceptual”; bounded operators; sort of answers the q. “What is QFT?”

Disadvantages: Very far from physical techniques, hard.

Local operators, old symmetries: needs an upgrade.
Advantages: More “conceptual”; bounded operators; sort of answers the q. “What is QFT?”

Disadvantages: Very far from physical techniques, hard.
Local operators, old symmetries: needs an upgrade.

Peculiar feature:
Advantages:
More “conceptual”; bounded operators; sort of answers the q. “What is QFT?”

Disadvantages:
Very far from physical techniques, hard.
Local operators, old symmetries: needs an upgrade.

Peculiar feature:
No Hilbert space: derivable via Gelfand-Naimark-Segal (GNS)
Advantages:

- More “conceptual”; bounded operators; sort of answers the q. “What is QFT?”
- Allows to prove general facts. Entanglement properties.
- Structural theory. Superselection sectors.

Disadvantages:

- Very far from physical techniques, hard.
- Local operators, old symmetries: needs an upgrade.

Peculiar feature:

- No Hilbert space: derivable via Gelfand-Naimark-Segal (GNS)
- State is not an abstract vector but a map $A \to \mathbb{C}$ (I.e., prescription for taking averages)
Advantages:

More “conceptual”; bounded operators; sort of answers the q. “What is QFT?”

Disadvantages:

Very far from physical techniques, hard.

Local operators, old symmetries: needs an upgrade.

Peculiar feature:

No Hilbert space: derivable via Gelfand-Naimark-Segal (GNS)

State is not an abstract vector but a map $A \rightarrow \mathbb{C}$ (I.e., prescription for taking averages)

$\sigma \mapsto \langle \psi | O | \psi \rangle$ or $\text{Tr}(O \rho_\psi)$.
Functorial QFT (FQFT)
Functorial QFT (FQFT)

(Often called cutting-gluing or Segal’s or Atiyah-Segal axioms)
Functorial QFT (FQFT)

(Often called cutting-gluing or Segal’s or Atiyah-Segal axioms)

Basic idea: turn formal rules of the path integral into axioms.
Functorial QFT (FQFT)

(Often called cutting-gluing or Segal's or Atiyah-Segal axioms)

Basic idea: turn formal rules of the path integral into axioms.

\[
Z[\Sigma] \in V_{\text{in}} \otimes V_{\text{out}}
\]
Functorial QFT (FQFT)

(Often called cutting-gluing or Segal’s or Atiyah-Segal axioms)

Basic idea: turn formal rules of the path integral into axioms.

Functor from bordisms to vector spaces.

\[Z[\Sigma] \subset V_{\text{in}} \otimes V_{\text{out}} \]
Functorial QFT (FQFT)

(Often called cutting-gluing or Segal’s or Atiyah-Segal axioms)

Basic idea: turn formal rules of the path integral into axioms.

\[Z[\Sigma] \in V_{\text{in}} \otimes V_{\text{out}} \]

Functor from bordisms to vector spaces.

Computes correlation functions, partition functions, states...
Functorial QFT (FQFT)

(Often called cutting-gluing or Segal’s or Atiyah-Segal axioms)

Basic idea: turn formal rules of the path integral into axioms.

Functor from bordisms to vector spaces.

Computes correlation functions, partition functions, states...

Key property is the cutting/gluing law:
Functorial QFT (FQFT)

(Often called cutting-gluing or Segal's or Atiyah-Segal axioms)

Basic idea: turn formal rules of the path integral into axioms.

Functor from bordisms to vector spaces.

Computes correlation functions, partition functions, states...

Key property is the cutting/gluing law:

\[Z[\Sigma] \in V_{\text{in}} \otimes V_{\text{out}} \]

\[Z[\Sigma_1] \otimes Z[\Sigma_2] \]

\[Z[\Sigma] = \text{Hilbert space (built into axioms)} \]
Functorial QFT (FQFT)

(Often called cutting-gluing or Segal's or Atiyah-Segal axioms)

Basic idea: turn formal rules of the path integral into axioms.

Functor from bordisms to vector spaces.

 Computes correlation functions, partition functions, states...

Key property is the cutting/gluing law:

\[Z[\Sigma_1] \otimes Z[\Sigma_2] \]

Also adopted by mathematicians

\[Z[\Sigma] = \text{Hilbert space (built into axioms)} \]
Functorial QFT (FQFT)
(Often called cutting-gluing or Segal’s or Atiyah-Segal axioms)

Basic idea: turn formal rules of the path integral into axioms.

Functor from bordisms to vector spaces.
Computes correlation functions, partition functions, states...

Key property is the cutting/gluing law:

\[\mathcal{Z} \left[\Sigma \right] \in V_{\text{in}} \otimes V_{\text{out}} \]

Also adopted by mathematicians

\[\mathcal{Z} \left[\Sigma \right] = \text{Hilbert space (built into axioms)} \]

Very promising!
Biggest success of FQFT
Biggest success of FQFT

Is topological QFT (TQFT)
Biggest success of FQFT

Is topological QFT (TQFT)

We basically have a mathematical definition in the topological case.
Biggest success of FQFT

Is topological QFT (TQFT)

We basically have a mathematical definition in the topological case.

Classification (of fully extended TQFTs)
- cobordism hypothesis
 (Baez-Dolan, proved by Lurie)
Biggest success of FQFT

Is topological QFT (TQFT)

We basically have a mathematical definition in the topological case.

Classification (of fully extended TQFTs)
- cobordism hypothesis (Baez-Dolan, proved by Lurie)

Active field of study.
Issues with FQFT
Issues with FQFT

Still young and underdeveloped.
Issues with FQFT

Still young and underdeveloped.

Hard to build interacting non-topological examples (none known?)
Issues with FQFT

Still young and underdeveloped.

Hard to build interacting non-topological examples
(none known?)

(Hard in all approaches.)
CFT

All axioms can be specialized to include conformal invariance.
CFT

All axioms can be specialized to include conformal invariance.

Conformal invariance + OS = basis for conformal bootstrap (axioms of Euclidean CFT)
CFT

All axioms can be specialized to include conformal invariance.

Conformal invariance + OS = basis for conformal bootstrap (axioms of Euclidean CFT)

Conformal invariance + FQFT = Segal’s original definition of CFT
CFT

All axioms can be specialized to include conformal invariance.

Conformal invariance + OS = basis for conformal bootstrap (axioms of Euclidean CFT)

Conformal invariance + FQFT = Segal’s original definition of CFT

Conformal invariance + AQFT = conformal nets (In 2d, conformal net \rightarrow VOA)
Many other ideas and directions in the literature...

E.g.
Many other ideas and directions in the literature...
E.g.

Non-Lorentzian theories, non-local theories, $T\overline{T}$-deformed... (pushing limits of QFT)
Many other ideas and directions in the literature...

E.g.

Non-Lorentzian theories, non-local theories, $T\bar{T}$-deformed... (pushing limits of QFT)

Also work on exotic field theories
(Seiberg, Shao, Lam, etc)
Many other ideas and directions in the literature...

E.g.

Non-Lorentzian theories, non-local theories, \(\bar{T}T \)-deformed... (pushing limits of QFT)

Also work on exotic field theories (Seiberg, Shao, Lam, etc)

Hu and Losev proposal: QFT should be defined on “Feynman geometries” (spacetimes with UV cutoff)
QFT is our most important theoretical tool.

We have an amazing intuition for what QFT encompasses. Making it precise requires some work.

Need a new definition

Which will naturally incorporate all the new developments in QFT
QFT is our most important theoretical tool.

We have an amazing intuition for what QFT encompasses. Making it precise requires some work.

Need a new definition

Which will naturally incorporate all the new developments in QFT

Thank you!