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We will have a lot more data in the near future.

https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm

We will have 20–25× more data.

⇒ We want to understand every
aspect of it based on 1st principles!
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We want to understand the LHC data based on 1st

principles.

What do we need to understand the data?

1 (a lot of) precise Simulations

2 optimized analyses for high-dimensional data

⇒ Machine Learning, as numerical tool, has a significant
impact to every aspect of the simulation chain!
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ML improves precise Simulations.

dσ ∼ pdf × matrix element2 × phase space

⇒ pdfs: ML reduces uncertainties.

NNPDF uses NN for a long time (no parametric function assumed).

Contemporary ML and hyperoptimizations
reduced uncertainties from 3–5% to 1%.

GAN-enhanced compression for delivery.

hep-ph/0204232, 1002.4407, 1410.8849, 2109.02671,
1907.05075, 2104.04535, . . . 2109.02653⇒
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ML improves precise Simulations.

dσ ∼ pdf × matrix element2 × phase space

⇒ Amplitudes: Avoiding frequent calls to expensive matrix element.

as “simple” regression task,

with uncertainties / boosted using a Bayesian NN,

or using Catani-Seymour “basis” to
reach per-mille level accuracy.

⇒ Loop integrals: increasing precision

NN-assisted contour deformation

2109.11964, 1912.11055, 2002.07516, 2106.09474,
2206.14831, 2107.06625, . . . 2112.09145 ⇒
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ML improves precise Simulations.

dσ ∼ pdf × matrix element2 × phase space

⇒ phase space: increase unweighting efficiency.

improve Importance Sampling with normalizing flows

learn channel weights in multi-channel integration

learn distribution of events from
event sample directly.

1707.00028, 1810.11509, 2001.05486, 2001.10028,
2009.07819, 2005.12719, 2011.13445, 1907.03764,
1903.02433, 1901.00875, 2102.11524, . . . 2001.05478 ⇒
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ML improves precise Simulations.

Semi-classical approximation good for small splitting angles.

⇒ parton shower: improve over semi-classical approach

splittings are iterative, can be learned by RNN;

using ML-based inference to improve splitting kernels.

Many body final states can be tackled by graphs or sets and learned
directly.

1906.10137, 2012.06582, 1804.09720, 1808.07802, 1701.05927, 1807.03685, 2009.04842,
2109.15197, 2111.12849, 2012.09873
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ML improves precise Simulations.

⇒ Fragmentation: Remove modeling bias.

Same techniques as for pdfs.

⇒ Hadronization: better model non-perturbative effects.

Either improve existing clustering and
Lund string model

or use ML for more generic approach.

2105.08725, 1706.07049, 1807.03310,
2202.10779, . . . 2203.04983 ⇒
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ML improves precise Simulations.

⇒ Detector Simulation: Speed-up full Geant4

Indistinguishable showers 104× faster.

More ideas developed in “CaloChallenge 2022”.

⇒ Trigger: more efficient storage
and selection

Software for HLT, FPGAs for L1T

https://calochallenge.github.io/homepage/
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2109.02551, 1705.02355, 1712.10321, 1711.08813,
1802.03325, 1807.01954, 1912.06794, 2005.05334,
2102.12491, 2106.05285, PRL65.1321, 1712.07158,
1804.06913, 1903.10201, 2002.02534, 2104.03408,
2101.05108, 2110.13041, . . . 2110.11377 ⇒
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ML also speeds up Simulations.

End-to-end ML-generators learn multiple steps at once. Advantages:

+ training on data combined with simulations,

+ post-processing of MC data for example to unweight events,

+ allows us to efficiently ship event samples,

+ provide datasets for phenomenological analyses,

+ enable inverted simulations,

⇒ Precise models with full control available!
2101.08944, 2110.13632, 1901.00875, 1901.05282,
1903.02433, 1912.02748, 2001.11103. . . 2011.13445 ⇒
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We want to understand the LHC data based on 1st

principles.

What do we need to understand the data?

1 (a lot of) precise Simulations

2 optimized analyses for high-dimensional data

⇒ Machine Learning, as numerical tool, has a significant
impact to every aspect of the simulation chain!
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ML helps to invert the Simulation — for better inference.

⇒ Reconstruction in a busy detector

going beyond traditional particle flow algorithms with GNNs

improved tracking

⇒ Better particle identification

e.g. Top Tagging Challenge

2003.08863, 2101.08578, 2106.01832,
2012.11944, 2012.04533, . . . 1902.09914 ⇒
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ML helps to invert the Simulation — for better inference.

⇒ Unfolding of detector effects

must be high-dimensional, unbinned, and statistically well-defined

Classifier-based MC reweighting

Conditional normalizing flow (cINNs)-based
learn probability density per event

1806.00433, 2006.06685, 1911.09107, 2011.05836, 1912.00477,
2105.04448, 2105.09923, 2108.12376, . . . 2109.13243 ⇒
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ML helps to invert the Simulation — for better inference.

⇒ Inverting to parton level

Inversion of QCD radiation and
heavy particle (t,W ,Z , h) decays

Uses similar techniques like unfolding
(cINNs and Classifiers)

1806.00433, 2109.13243, 1911.09107, 2011.05836, 1912.00477,
2105.04448, 2105.09923, 2108.12376, . . . 2006.06685⇒
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ML helps to invert the Simulation — for better inference.

Simulation-based inference: inverting the full simulation chain
⇒ MadMiner

can learn LL ratio or score by “mining” simulators.

Having them differentiable would make it even
more applicable.

⇒ Matrix-Element Method (MEM)

get LL from ME and unfolded events.

More advanced (ML-based) unfolding
yields better estimators.

1805.00013, 1805.00020, 1805.12244, 1808.00973, 2110.07635,
1506.02169, 1601.07913, . . . 1907.10621⇒
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ML also improves model-independent searches.

Removing signal-model dependence to search for new physics:

⇒ Enhancing bump hunts

methods now reaching results of idealized comparisons.

lot’s of active research in feature selection etc.

⇒ Anomaly detection

searches for out-of-distribution events
using various approaches

see also “Dark Machines Anomaly
Score Challenge”
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1805.02664, 1902.02634, 1708.02949, 2109.00546 ⇒
2001.04990, 2101.08320, 2105.14027, . . .
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The importance of ML for Collider Physics.

⇒ Modern ML is a new tool in our numerical toolbox — with applications
to every step in the simulation/inference chain.

⇒ We’ve seen everything between “proof-of-concepts” to well established
use cases.

⇒ There is an interesting interplay between HEP and the ML/AI
community:

Precise HEP simulations provide infinite, excellent training data for
ML.

HEP-specific application requirements (precision, symmetry, . . . ) are
different from industry applications (computer vision, etc.).
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