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SNOWMASS SUMMER MEETING 2022



• LGT is a numerical non-perturbative methods for reliable calculations 
in strongly-coupled quantum field theories. It provides ab initio 
predictions for processes involving QCD.


• Strong overlap with a number of topics in various frontiers, primarily in 
EF, RF, NF, and CompF, as well as other topical areas in the TF. 


• Received ~60 LOI as primary or secondary listing and 15+ whitepapers 
exclusively on the lattice QCD topic or with a large lattice-QCD 
component.


• A number of workshops and conferences were co-organized by the 
lattice gauge theorists within the Snowmass process on topics such as 
rare processes and precision measurements, heavy-flavor physics 
and CKM matrix elements, and neutrino-nucleus scattering.


• TF05 also organized dedicated sessions and talks at the (virtual) 
Snowmass Community Planning Meeting in October 2020, at the 
Theory Frontier Conference at the Kavli Institute for Theoretical 
Physics in Santa Barbara, CA in February 2022, and at the Snowmass 
Community Summer Study Workshop at the University of Washington, 
Seattle, WA in July 2022. 

SNOWMASS AND 
LATTICE GAUGE THEORY
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Abstract8

Lattice gauge theory continues to be a powerful theoretical and computational approach to9

simulating strongly interacting quantum field theories, whose applications permeate almost all10

disciplines of modern-day research in High Energy Physics. Whether it is to enable precision11

quark- and lepton-flavor physics, to uncover signals of new physics in nucleons and nuclei, to12

elucidate hadron structure and spectrum, to serve as a numerical laboratory to reach beyond13

the Standard Model, or to invent and improve state-of-the-art computational paradigms, the14

lattice-gauge-theory program is in a prime position to impact the course of developments and15

enhance discovery potential of a vibrant experimental program in High Energy Physics over16

coming decade. This projection is based on abundant successful results that have emerged using17

lattice gauge theory over the years, the continued improvement in theoretical frameworks and18

algorithmic suits, the move into the exascale era of high-performance computing, and a skillful,19

dedicated, and organized community of lattice gauge theorists in the U.S. and worldwide. The20

prospects of this effort in pushing the frontiers of research in High Energy Physics have recently21

been studied within the U.S. decadal Particle Physics Planning Exercise (Snowmass2021), and22

the conclusions are summarized in this Topical Report.23
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coming years to determine whether industry-developed quantum hardware satisfies the needs of1260

the HEP community or special-purpose hardware may need to be co-designed, following the devel-1261

opment and application of special-purpose HPC hardware/software in the lattice-QCD research in1262

the past []. Finally, lattice gauge theorists will find ways to leverage the current advancements on1263

classical computation of field theories and augment them with quantum-computing routines [].1264

7 Strengthening the lattice field theory ecosystem1265

7.1 Hardware and software requirements and computational needs1266

To be written.1267

7.2 Community organization and best practices1268

To be written.1269

7.3 Workforce and career development1270

To be written.1271
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THE REPORT DRAWS ON A NUMBER OF SNOWMASS WHITEPAPERS…



AS WELL AS USQCD’S 2019 WHITEPAPERS…

• Neutrino-nucleus scattering [21, 22, 320]

• Determination of the strong coupling ↵s [356]

• Parton distribution functions: lattice [408]; phenomenology and experiment [410, 411].

• The Electron Ion Collider (EIC) [412].

• Composite Higgs models [428]

• Axion dark matter [448] (connection to EDMs [169])

• Supersymmetric lattice gauge theories [462].

• Generalized symmetries [463].

• Conformal field theories [522].

• Machine learning in lattice field theory [15].

• Quantum information science and quantum computing, including quantum simulation
of lattice field theories [16–19].

• Computing needs of numerical lattice gauge theory [14].

The USQCD Collaboration would be grateful to anyone bringing omissions to our attention
via email to ask@fnal.gov.
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Enabling precision quark- and lepton-flavor physics with lattice QCD

Elucidating hadron structure and spectrum for high-energy physics

Reaching beyond QCD with lattice field theory

Muon anomalous magnetic moment and tau decay


Quark masses and strong coupling constant


Light quark flavor physics


Heavy quark flavor physics 

Neutrino-nucleus scattering for neutrino phenomenology


Electric dipole moments for CP violation


Baryon and lepton number/flavor non-conservation 


Precision β decay for searches of new physics


QCD calculations for dark matter

Uncovering new-physics signals in nucleons and nuclei with lattice 

Parton distribution functions


QCD exotica and resonance physics


Multi-hadron scattering and interactions 

Strongly-coupled extensions of the Standard Model


Understanding the theory space of strong dynamics


Pushing the boundaries of particle theory 

PHYSICS REACH



Advancing theory and computation

Strengthening the lattice field theory ecosystem

Hardware and software requirements and computational needs


Community organization and best practices


Workforce and career development

Advancing standard computational algorithms


Machine-learning applications in lattice field theory


Hamiltonian-simulation methods and quantum computation

COMPUTING AND 
ECOSYSTEM



SOME KEY 
MESSAGES

With an order of magnitude increase in overall computing power over 
the next decade, commensurate increases in the computing resources 
devoted to LGT will be necessary to ensure that the goals of the 
program can be achieved. Further innovations in computing algorithms 
and physics methods will also be necessary.


Investment in a diverse human resource with various skillsets in theory, 
algorithm, high-performance computing, and numerical analysis is key.


Need to keep up with ever-changing computing software and 
hardware architecture including machine learning and quantum 
computing. 


Supporting dedicated programs for software development and 
hardware integration will continue to be critical over the next decade.


Should continue engaging with the theoretical and experimental 
communities to increase impact and relevance of the computation. 


Need to ensure that the trained workforce will be retained in the 
program, e.g., by creating permanent positions, so that the continuity of 
the long-term projects will not be disrupted. 



Have we missed an important message?


Please share with us your feedback on the report (best if received by late July).


Links: Draft report and GoogleForm for comments

With an order of magnitude increase in overall computing power over 
the next decade, commensurate increases in the computing resources 
devoted to LGT will be necessary to ensure that the goals of the 
program can be achieved. Further innovations in computing algorithms 
and physics methods will also be necessary.


Investment in a diverse human resource with various skillsets in theory, 
algorithm, high-performance computing, and numerical analysis is key.


Need to keep up with ever-changing computing software and 
hardware architecture including machine learning and quantum 
computing. 


Supporting dedicated programs for software development and 
hardware integration will continue to be critical over the next decade.


Should continue engaging with the theoretical and experimental 
communities to increase impact and relevance of the computation. 


Need to ensure that the trained workforce will be retained in the 
program, e.g., by creating permanent positions, so that the continuity of 
the long-term projects will not be disrupted. 
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https://www.dropbox.com/sh/a9mjedtj8m0nxo0/AAB06IwyiLzPwmG6xTfcXoxJa?dl=0
https://forms.gle/r4shfYBvttU94sop9

