Fundamental Physics from Cosmic Surveys

Benjamin Wallisch

Institute for Advanced Study & UC San Diego

Galaxy Surveys

Line Intensity Mapping

CMB Surveys

Imprinting Primordial Information

Cosmic Microwave Background (CMB)

Cf. electron-positron collider.

Large-Scale Structure (LSS)

+ Lyman-α forest, galaxy clusters,

. . .

Cf. proton-proton collider.

Recent Examples

- Free-Streaming Neutrinos in the CMB & LSS
- Dark Radiation and Axion-Like Particles
- Cosmological Parameters from LSS
- Primordial Non-Gaussianity from LSS
- Primordial Features in LSS

• ...

Free-Streaming Neutrinos

- 41% of the radiation density in the universe:
 - → Leave gravitational imprint,
 - → Can detect their energy density.
- In the Standard Model: free-streaming since $T \sim 1 \, \mathrm{MeV}$.
- Free-streaming neutrinos overtake the photons and pull them ahead of the sound horizon.

- New theoretical insights & modeling + precise observational data:
 - ightarrow Extraction from CMB (2015) and LSS (2018) data!
 - \rightarrow Constraints on neutrino interactions.

Dark Radiation and Axion-Like Particles

- Cosmological surveys can precisely measure the radiation density.
- Neutrino energy density theoretically computed to high precision.
 - Deviation means physics beyond the Standard Model!
 - No deviation implies constraints on potential new physics, e.g.
 - \rightarrow on couplings of new particles to the Standard Model,
 - \rightarrow on changes to thermal history, e.g. phase transitions,
 - $\rightarrow \dots$

SM Couplings of Axion-Like Particles

Cosmological Parameters from LSS

- Theoretical development of the effective field theory of large-scale structure (EFTofLSS).
- Powerful description of structure formation into the mildly nonlinear regime.
 - \rightarrow Analyses can use more information.
- Additional theoretical advances for computational tractability.
 - \rightarrow Cosmological analyses of the full power spectrum (2019),
 - \rightarrow Independent of the CMB.

Inflation and Fundamental Physics

Primordial Features from LSS

- Primordial features:
 - Observational signature of departure from scale invariance,
 i.e. new inflationary energy scale(s) and phenomena.
 - Oscillatory imprint in CMB and LSS observations.
- Theoretical insights allow separation from late-time effects.
 - \rightarrow Use full statistical power of LSS surveys (2019).

Primordial Non-Gaussianity from LSS

- Primordial non-Gaussianity:
 - Observational signature of inflationary dynamics,
 e.g. number of light fields and inflaton self-interactions.
- Non-Gaussianity also induced by gravitational evolution in the late universe.
- EFTofLSS allows first constraint on equilateral primordial non-Gaussianity, similar to WMAP (2022).
- A lot of ongoing theoretical work, including map-based analyses, simulation-based inference, machine learning, ...

Thank you!

Benjamin Wallisch bwallisch@ias.edu