Neutrino Theory and Astrophysics and Cosmology

Evan Grohs (he/him/his)
North Carolina State University

2021 Snowmass Community Summer Study
University of Washington Seattle -- 20 Jul 2022

Outline

- I. Theory and Observational motivation
- II. Big Bang Nucleosynthesis
- III. Radiation in the Cosmic Microwave Background
- IV. Matter Power Spectrum
- V. Sterile Neutrino Dark Matter
- VI. Neutrino Secret Interactions
- VII. Summary

Astrophysical Neutrino "Laboratories"

Early Universe, Weak Decoupling/BBN

Gravitation dictates a **slow expansion**, allowing very weakly interacting particles to affect the physics. **Large entropy-per-baryon**, $S/k_b \sim 10^{10}$, simplifying the nuclear physics. **Low lepton numbers**, implying very small $\nu - \bar{\nu}$ asymmetry. n/p, deuterium (D), helium, $N_{\rm eff}$ sensitive to any BSM physics that alters the time/temperature/scale factor relationship.

very tightly constrained

by CMB (soon Stage-4) observables and 30m-class telescope-determined D/H.

Stellar Collapse, supernovae, binary compact object mergers

Weak interaction dictates all aspects of evolution. Very large electron lepton number, so evolution is exquisitely sensitive to lepton number violation.

Low-to-high entropy, $S/k_b \sim 1$ to ~ 100 ; primary site for intermediate and heavy nucleus nucleosynthesis; many aspects can be sensitive to neutrino flavor transformation and BSM physics.

Manufactures neutron stars and black holes.

Not well constrained

$$\nu_e + n \rightleftharpoons p + e^-$$

$$\bar{\nu}_e + p \rightleftharpoons n + e^+$$

$$n \rightleftharpoons p + e^- + \bar{\nu}_e$$

The coming era of precision cosmology

i. CMB Stage-IV (2203.07638) and others

- A. Simons Observatory Atacama Desert, Chile
- B. South Pole Observatory South Pole
- c. Other CMB experiments CLASS and QUIET
- D. Satellites: LiteBIRD and PIXIE

II. Thirty-meter class telescopes

- A. EELT and GMT Atacama
- в. ТМТ Mauna Kea, Hawaii

III. Surveys

- A. DES Cerro Tololo, Chile
- B. DESI Kitt Peak, AZ
- c. Vera Rubin Observatory Cerro Pachón, Chile
- D. Satellites: Euclid, Roman, SPHEREX

Snowmass 2021 White Paper

Synergy between cosmological and laboratory searches in neutrino physics: a white paper

Editors: Martina Gerbino¹, Evan Grohs², Massimiliano Lattanzi³

Kevork N. Abazajian,¹ Nikita Blinov,² Thejs Brinckmann,³,⁴ Mu-Chun Chen,⁵ Zelimir Djurcic,⁶ Peizhi Du,² Miguel Escudero,⁶ Martina Gerbino,⁴ Evan Grohs,⁶ Steffen Hagstotz,¹⁰ Kevin J. Kelly,¹¹,¹² Massimiliano Lattanzi,⁴ Christiane S. Lorenz,¹³ Marilena Loverde,¹⁴ Pablo Martínez-Miravé,¹⁵,¹⁶ Olga Mena,¹⁵ Joel Meyers,¹² Walter Pettus,¹⁶ Ninetta Saviano,¹⁰,²⁰ Anna M. Suliga,²¹,²² Volodymyr Takhistov,²³ Mariam Tórtola,¹⁵,¹⁶ José W. F. Valle,¹⁵ Benjamin Wallisch²⁴,²⁵

arXiv: 2203.07377

Physics of Big Bang Nucleosynthesis

Baryogenesis ~?

QCD Epoch $\sim 10^{-5}$ s

Setting the stage:

- a. Homogeneous & Isotropic
- b. Nearly CP symmetric (10⁻¹⁰) [cf. 2204.08668]
- c. No free quarks

Synthesis of light-elements:

- Hydrogen ~ 0.75
- Helium ~ 0.25
- Deuterium $\sim 10^{-5}$
- Lithium $\sim 10^{-10}$

Sub-epochs of BBN

Weak Decoupling: v(v, v)v & e(v, v)e

Weak Freeze Out: n(v, e)p

EM equilibrium: $e(e, \gamma)\gamma$

Nuclear Freeze Out: $n(p, \gamma)d$

Time $\lesssim 1$ sec.

Out-of-Equilibrium Neutrino Energy Transport

Neutrino scattering on charged leptons

$$\nu_i + \overline{\nu}_i \leftrightarrow e^- + e^+$$

$$\nu_i + e^{\pm} \leftrightarrow \nu_i + e^{\pm}$$

Important for CMB parameter for radiation energy density

$$\delta \rho_{\nu} \sim 1\%$$

Neutrino Transport coupled to Nuclear Reaction Network (Grohs et al 2016)

$$\delta(^{4}{\rm He}) \sim 4 \times 10^{-4}$$

$$\delta(D/H) \sim 3 \times 10^{-3}$$

 $\sim \omega_b$

Deuterium sensitive to entropy!

Neutron-to-Proton Rates

$$u_e + n \leftrightarrow p + e^-$$
 $e^+ + n \leftrightarrow p + \overline{\nu}_e$
forates normalized to neutron lifetime

 $n \leftrightarrow p + e^- + \overline{\nu}_e$
 $m_n - m_p \simeq 1.3 \text{ MeV}$

6 rates normalized to neutron lifetime

$$m_n-m_p\simeq 1.3$$
 MeV

Rule of thumb: ⁴He 25% by mass

$$n/p \sim 1/7$$

Grohs & Fuller (2016)

Neutrino physics occurring during BBN

Coincident epochs during BBN:

Weak Decoupling (Diff. Vis.)

Weak Freeze-Out (n/p)Nuclear Freeze-Out (X_i)

Dashed lines: weak equilibrium or NSE

Radiation energy density during Recombination

Computing CMB observables requires energy density

Effective number of neutrinos: parameter for non-photon energy density Need not be an integer!

Theory: $N_{\rm eff} = 3.045$

Cf. 2203.07943 & talk by B. Wallisch

Effects of Radiation on CMB

Black points are Planck 2018 data values

Temperature Power Spectrum

Non-photon radiation

Non-damped Temperature Power Spectrum

Free-streaming radiation

Planck 2018:
$$N_{\mathrm{eff}} = 2.92^{+0.18}_{-0.19} \, (1\sigma)$$

Matter Power Spectrum

Neutrinos become non-relativistic: $z_{
m nr} \sim 100$

Power suppressed from neutrino free-streaming at small scales

Planck 2018: $\Sigma m_{
u} < 0.120\,\mathrm{eV}\,(2\sigma)$

Contributions to Matter Power Spectrum (forecasts)

CMB Lensing CMB-S4

Galaxy Density
VRO Gold sample

Cluster Counts tSZ counts from CMB-S4

Contributions weighted by S/N (x3 for CMB Lensing)

Baryon-Acoustic Oscillation Phase Shift

Similar physics of free-streaming radiation influencing CMB phase shifts

Sterile Neutrinos as DM

I. X-ray/ γ -ray constraints

- a. Current constraints solid
- b. Possible signal for $m_s \sim 7.1$ keV
- c. Dashed lines future sensitivity

- a. Feedback on explosion (2004.11389)
- b. No feedback (1908.11382)
- c. Dashed lines future sensitivity

Neutrino non-standard (secret) interactions

N. Blinov, M. Bustamente, K. Kelly, Y. Zhang and et al: 2203.01955

Cosmology Constraints/Improvements

- a. Possible amelioration of Hubble Tension (2203.06142)
- b. Additional radiation energy density
- c. No useful constraints from neutrino decoupling (2002.08557)

SN 1987A constraints from Kolb & Turner (1987) Updated by Shalgar+ (2021)

- a. Rapid thermalization in core
- b. Propagation and detection at Earth

Neutrino Mass Complementarity

Cross Frontier
Discussion w/
M. Lattanzi

8:00 am – 9:30 am Friday, 22 Jul 2022 HUB 307

<u>Summary</u>

- 1. Solid evidence for the existence of neutrinos in hot big bang cosmology
 - a. CMB and BAO show $N_{\rm eff}$ not equal to zero
 - b. BBN shows neutrinos have ~thermal spectra
- 2. Future probes will show even more sensitivity to neutrino energy spectra
- 3. Convolution of terrestrial experiments and cosmological probes may reveal basic neutrino properties
- 4. Discordance between terrestrial and cosmology will undoubtedly reveal new physics

Backup Slides

Constraints on non-standard Neutrino Cosmologies

I. Sterile Neutrinos

- a. N_{eff} sensitivity from O(eV)
- b. Dark matter contribution for O(keV)
- c. Early Universe dynamics O(MeV)

II. Neutrino non-standard interactions

a. Influence on free-streaming assumptions (possible Hubble tension amelioration)

III. Neutrino lepton numbers

- a. Leptogenesis models
- b. BBN abundances (put in constraints)
- IV. Neutrino lifetime (from free-streaming): $au_{
 u} \geq 4 imes 10^6 (m_{
 u}/0.05\,\mathrm{eV})^5$
- V. Low-temperature Reheating from Inflation (decrease in $N_{\rm eff}$)

Concordance Scenarios for neutrino mass

Beyond Concordance for neutrino mass

1. First Scenario

- a. Signal in $0\nu2\beta$
- b. No detection of $\Sigma m_{\nu} \neq 0$
- c. Severe challenge to Λ CDM and thermal history of neutrino spectra
- d. Any detection from endpoint experiments would further challenge Λ CDM

2. Second Scenario

- a. Signal in $0\nu2\beta$
- b. Detection of $\Sigma m_{\nu} \neq 0$
- c. Signals discordant, i.e., do not lie in bounded areas of previous plot
- d. Possible Causes:
 - i. Another challenge to ΛCDM
 - ii. Sterile states contributing to $m_{\beta\beta}$
 - iii. Exotic physics beyond neutrino mass

Helium vs. Neutron lifetime

 $UCN\tau$ Bottle expt. (1707.01817) $\tau_n = 877.7 \pm 1.1 \,\mathrm{s}$

Tension $\sim 4\sigma$

NCNR Beam expt.

Big Bang Nucleosynthesis

c/o Planck

$$d(p,\gamma)^3$$
He $\Longrightarrow d+p \leftrightarrow \gamma + {}^3$ He

Entropy and Nuclear Statistical Equilibrium

Nuclear Reactions are fast in both directions at high temperature

$$Zp + (A - Z)n \leftrightarrow {}^{A}_{Z}X$$

Entropy of universe is LARGE (for nuclear environment)

$$s_{\rm pl} = \frac{1}{n_b} \frac{\rho + P}{T} \sim \frac{T^3}{n_b} \sim 10^{10}$$

Nuclei in NSE at high temperature/initial conditions

$$Y_X^{\text{(NSE)}} \simeq Y_p^Z Y_n^{A-Z} 2^{(A-3)/2} \pi^{3(A-1)/2} g_X A^{3/2} \left[\frac{n_b}{(Tm_b)^3} \right]^{A-1} e^{B_X/T}$$

$$\simeq s_{\text{pl}}^{1-A} T^{3(A-1)/2} e^{B_X/T}$$

Nuclear reactions in BBN

First BBN calculation: Wagoner, Fowler, Hoyle 1967

Lines between boxes denote reactions

Ignoring weak interactions, number of <u>protons</u> and <u>neutrons</u> separately conserved

Only one way to make deuterium "deuterium bottleneck"

Observations of Primordial Deuterium

Cooke et al (2018)

$$10^5 \times D/H = 2.53 \pm 0.03$$

Planck (2015): Success of Modern Cosmology

Number of systems \rightarrow 70

$$\delta(D/H) < 1\%$$

New Results from LUNA on $d(p, \gamma)^3$ He

Deuterium sensitive to nuclear reaction rates.

Previously (Di Valentino et al, 2014):

Reaction	Rate symbol	$\sigma_{^2\mathrm{H/H}} imes 10^5$
$p(n,\gamma)^2$ H	R_1	± 0.002
$d(p,\gamma)^3$ He	R_2	± 0.062
$d(d, n)^3$ He	R_3	± 0.020
$d(d, p)^3$ H	R_4	±0.013

LUNA Collaboration, 2020:

$$E = 32 - 263 \,\mathrm{keV}$$

$$\delta \sim 3\%$$

Pitrou et al, 2021

 1.8σ tension between BBN (D/H) and CMB

Want experimental data on transfer rxns:

$$d(d,p)t$$
 $d(d,n)^3$ He

BBN Comparisons (c/o Alain Côc)

$d(p,\gamma)^3$ He	
Data Set	

Reference	Present	Pitrou et al. (2018) ^a	Yeh et al. (2020)	Pisanti et al. (2020) ^b
Mossa et al. (2020) ^c	✓	X	✓	✓
Tišma et al. $(2019)^{c}$	✓	X	X	✓
Bystritsky et al. (2008)	X	✓	X	X
Casella et al. $(2002)^{c}$	✓	✓	✓	✓
Schmid et al. (1997) ^c	✓	✓	✓	✓
Ma et al. (1997) ^c	✓	✓	✓	✓
Bailey et al. (1970)	✓ e	X	X	X
Wölfli et al. (1967)	X	X	✓	X
Geller et al. (1967)	X	X	X	✓
Warren et al. $(1963)^{c,d}$	✓	X	X	✓
Griffiths et al. (1963)	✓ e	X	X	✓
Griffiths et al. (1962)	✓ e	X	✓	✓
Griffiths & Warren (1955)	✓ e	X	X	X

Takeaway: D/H sensitive to nuclear physics

⇒ need precise networks

Bayesian minimization

 χ^2 minimization

LUNA Results with Helium

	$\Omega_{\rm b} h^2$	δ(%)	N _{eff}
D + 3v (without LUNA data)	0.02271 ± 0.00062	2.73	3.045
D + 3v (with new LUNA data)	0.02233 ± 0.00036	1.61	3.045
CMB + 3 <i>v</i>	0.02230 ± 0.00021°	0.94	3.045
Planck + 3v	0.02236 ± 0.00015	0.67	3.045
(D+CMB)	0.02224 ± 0.00022	0.99	2.95 ± 0.22
(D + Y _p)	0.0221 ± 0.0006	2.71	2.86 ^{+0.28} _{-0.27}

Other Analyses with LUNA data

Pisanti et al, 2021 (cf. LUNA, 2020)

Yeh et al, 2021

Good Agreement

Unitarity: consequences on T matrix

$$\begin{cases}
\delta_{fi} &= \sum_{n} S_{fn}^{\dagger} S_{ni} \\
S_{fi} &= \delta_{fi} + 2i\rho_{f} T_{fi} \\
\rho_{n} &= \delta(H_{0} - E_{n})
\end{cases}$$

$$T_{fi} - T_{fi}^{\dagger} = 2i \sum_{n} T_{fn}^{\dagger} \rho_{n} T_{ni}$$

NB: unitarity implies optical theorem $\,\sigma_{{
m tot}}=\frac{4\pi}{k}{
m Im}\,\,f(0)$; but not only the O.T.

■ Implications of unitarity constraint on transition matrix

1. Doesn't uniquely determine T_{ii}; highly restrictive, however

Elastic: Im $T_{11}^{-1} = -\rho_1$ (assuming T & P invariance)

Multichannel: Im $\mathbf{T}^{-1} = -\boldsymbol{\rho}$

- 2. Unitarity violating transformations
 - cannot scale **any** set: $T_{ij} o lpha_{ij} T_{ij}$ $lpha_{ij} \in \mathbb{R}$
 - cannot rotate **any** set: $T_{ij} o e^{i heta_{ij}}T_{ij} \qquad heta_{ij} \in \mathbb{R}$

 \star consequence of linear 'LHS' \propto quadratic 'RHS'

- Most important feature: linear ~ quadratic
- Unitary parametrizations constrain the experimental data itself
 * normalization, in particular

Goal: Create self-consistent nuclear reaction network for BBN

Precision Nuclear Reaction Calculations

- Monte Carlo Variational Methods
 - Krauss & Romanelli, ApJ (1990)
 - > Fiorentini et al, Phys. Rev. D (1998)
- Ab Initio Calculations
 - Marcucci et al, Phys. Rev. Lett. (2016)
- Lattice QCD
 - Beane et al, Phys. Rev. Lett. (2015)
 - > Savage et al, Phys. Rev. Lett. (2017)
- Bayesian Estimation
 - Iliadis et al, ApJ (2016)
 - Gomez-Inesta et al, ApJ (2017)
 - de Souza et al, Phys. Rev. C (2019)
- R-matrix theory
 - Descouvement & Baye, Rep. on Prog. in Phys. (2010)
 - Paris et al, Nucl. Data Sheets (2014)

Observations of Primordial Helium

Linear regression of HII regions in metal-poor galaxies

Also see Izotov and Thuan

Competitive CMB measurements forthcoming

Observations of Helium-3

Bania, Rood, Balser (2002):

$$10^5 \times {}^3{\rm He/H} = 1.1 \pm 0.2$$

Cooke (2015): Proposal to measure ratio ³He/⁴He in DLAs

Observations of Lithium

Spite and Spite (1982):

Pop II Halo stars Abundance vs. Temperature

$$^{7}\text{Li/H} = 1.12 \times 10^{-10}$$

Slope?

A Lithium-6 Problem?

Detection of ⁶Li would create strong tension with SBBN

Asplund et al (2006): Modeled dwarf stars with 1D and 3D Local Thermodynamic Equilibrium (LTE) analyses. Detected blending of 670.8 nm line.

<u>Cayrel et al (2007)</u>: NLTE effects important in modeling redward wing of 670.8. Previous detections should be taken as upper limits. Very little effect on ⁷Li abundance.

<u>Lind et al (2013)</u>: More sophisticated 3D NLTE model with Li, Na, and Ca. Reached same conclusions.

No evidence for ⁶Li anomaly.