
HEP-CCE

Portability: A Necessary Approach for Future 

Scientific Software

Snowmass 22, Computational Frontier 1 
July 20, 2022

Meghna Bhattacharya (Fermilab)
for HEP-CCE



HEP-CCEHigh Performance Computing- Gen Z DOE Supercomputers    

2

● Today’s world of scientific software for High Energy Physics (HEP) 
powered by x86 code

● Future HEP Experiments -
○ Order of magnitude increase in data rate 

■ Data & processing complexity within existing frameworks
■ “Buy more CPUs” - not cost effective 

● High Performance Computing 

○ large installations of hardware using GPUs and other accelerators 
provide more processing power for the same energy consumption as 
with x86-based supercomputers. 

○ multiple different GPU and CPU vendors are available to optimize the 
hardware to our research problems.

●  Challenge - writing efficient scientific code and getting the science out a 
lot more difficult



HEP-CCEHigh Performance Computing (HPC) - HEP CCE Efforts

3

● HEP-CCE (Centre for Computational Excellence)       (2020 - 2023) 3 year pilot project 

○ 6 Experiments, 4 National labs across US

○ Intensity, Energy and Cosmic Frontiers

● Goal -  Exploit features of HPCs efficiently 

○ Develop and test strategies to overcome HEP community wide computational challenges

■ PPS: Portable Parallelization Strategy
■ IOS:  I/O and Storage on HPC Platforms  
■ EG:   Event Generators 
■ CW:  Complex Workflow on HPC

https://www.anl.gov/hep-cce

https://www.anl.gov/hep-cce


HEP-CCEHEP is (Slowly) Embracing Heterogeneous Computing 

Challenges: 
Hundreds of computing sites (grid clusters + HPC systems + clouds)
Hundreds of C++ kernels (several million LOC, no hot-spots) 
Hundreds of data objects (dynamic, polymorphic)
Hundreds of non-professional developers (domain experts)
→ Can’t rewrite code to target every HPC platform

Opportunity:
Scale of experiments and community provides significant R&D firepower

scores of active groups, will not attempt to list

Current Focus:
Online event filtering, offline pattern recognition, detector simulation

4



HEP-CCEPortable Parallelization Strategies (PPS) Activities
 Portability requirement - 
● single source code to be compiled for and executed on multiple different heterogeneous 

architectures with few or no changes

Investigate a range of software portability solutions:
● Libraries
● Compilers
● Language extensions

Define a set of metrics to evaluate portability solutions, as applied to our testbeds
● Productivity, cross-platform performance, broader impact, long-term sustainability, etc

Port a small number of HEP testbeds to each portability solution
● Tracking
● Simulation

Make recommendations to the experiments
● Must address needs of both LHC style workflows (many modules and many developers), and 

smaller/simpler workflows

5



HEP-CCEProgramming Models Evaluated 
● Most of the HEP codes are C++ based, so the programming models we investigate are 

those with good C++ support. 
● Kokkos

○ A C++ abstraction layer (library) that supports parallel execution of the code and data management for 
different host and accelerator architectures.  https://github.com/kokkos/kokkos/wiki 

● SYCL
○ SYCL is a specification for a cross-platform C++ abstraction layer https://www.khronos.org/sycl/ 
○ Implementations are provided by different vendors/organizations to support different architectures. 

● OpenMP/OpenACC https://www.openmp.org/ and https://www.openacc.org/ 
○ Directive-based programming models
○ Specifications for parallel execution on different host and accelerator architectures 

● Others 
○ Alpaka: C++ abstraction layer similar to Kokkos https://alpaka-group.github.io/alpaka/ 
○ std::par: language-based parallelism from the C++ 17 Standard
○ HIP: AMD’s abstraction layer for AMD and NVIDIA backends 

https://github.com/ROCm-Developer-Tools/HIP 

6

https://github.com/kokkos/kokkos/wiki
https://www.khronos.org/sycl/
https://www.openmp.org/
https://www.openacc.org/
https://alpaka-group.github.io/alpaka/
https://github.com/ROCm-Developer-Tools/HIP


HEP-CCEPortability Solutions: Software Support Chart
NVIDIA
CUDA* Kokkos Alpaka AMD 

HIP std::par SYCL OpenMP 

NVIDIA 
GPU hipcc nvc++ intel/llvm

compute-cpp

nvc++
LLVM, Cray 

GCC, XL

AMD 
GPU hipcc hipSYCL

intel/llvm

AOMP
LLVM
Cray

Intel GPU prototype HIPLZ: early 
prototype oneapi::dpl

oneAPI
intel/llvm

Intel OneAPI 
compiler

x86 CPU via HIP-CPU 
Runtime

oneAPI
intel/llvm

computecpp

nvc++
LLVM, CCE, 

GCC, XL

FPGA possibly via 
SYCL

via Xilinx 
Runtime

prototype 
compilers 
(OpenArc, 
Intel, etc.) 

ARM
computecpp

+
pocl

ARM, Cray
GCC, LLVM

Fujitsu

Supported / Partially Supported Not Supported

7

● products are 
rapidly evolving

● some hope of 
seeing 
emergence of 
industry 
standards at 
language level

All green cells in 
table are potential 
targets for our 
studies.

* As a reference



HEP-CCEMetrics for Evaluation of PPS Platform
Ease of learning (experts and novices) and extent of 
code modification

Code conversion
∙ CPU → PPL / CUDA → PPL / PPL → PPL

Impact on other existing code
∙ Event Data Model
∙ does it take over main(), does it affect the threading or 
execution model, etc

Impact on existing toolchain and build infrastructure
∙ do we need to recompile entire software stack?
∙ cmake / make transparencies

Hardware mapping
∙ evolving support for new hardware features
∙ new architectures

Feature availability
∙ reductions, kernel chaining, callbacks, etc
∙ concurrent kernel execution

Ease of Debugging

Address needs of all types of workflows
∙ scaling with # kernels / application
∙ scaling with # developers
∙ compute vs memory bound

Long-term sustainability and code stability
∙ Support model of technologies ➜ stability of implementation if 

underlying libraries (CUDA) change
∙ CUDA is going to be around for a long time, what about the 

portability solutions?
∙ Long term support for technologies by vendors

Compilation time
∙ separate builds for different architectures?

Performance: CPU and GPU
∙ degradation of CPU code?

Validation

Aesthetics
∙ compatibility with C++ standards

8

su
bj

ec
tiv

e 
an

d 
ob

je
ct

iv
e

→ more details

https://docs.google.com/spreadsheets/d/14tE3oJdHRMxAPPPJ0Io8n5j0Kvr7he2AxGKLXQbdhGs/edit?usp=sharing


HEP-CCETestbed Applications

9

Detector simulation
● Full MC simulation (Geant4) large code base, hard to parallelize, resource intensive. Use to develop/train

○ Fast MC simulation: effective models (ML or parametrized by hand). 
■ FastCaloSim (ATLAS) → arXiv:2103.14737 (HEP-CCE)

● Compact, regular application, good initial target
■ WireCell LArTPC simulation → arXiv:2104.08265 (HEP-CCE)

● 2D FFT Convolution-based LArTPC Simulation
Particle tracking
● sequence of complex, resource-intensive pattern recognition steps
● nested, dynamic data structures
● vibrant R&D on parallel algorithms targeting GPUs and FPGAs

○ Patatrack Pixel Tracking, p2r (CMS) → arXiv:2104.06573 (HEP-CCE)
○ ACTS (ATLAS, sPHOENIX, …): experiment-independent toolkit for track simulation and 

reconstruction

https://arxiv.org/abs/2103.14737
https://indico.fnal.gov/event/46114/contributions/201009/attachments/137052/170715/2020-11-05_all-hands_meeting_v2.0.pptx
https://arxiv.org/abs/2104.08265
https://arxiv.org/abs/2008.13461
https://www.snowmass21.org/docs/files/summaries/CompF/SNOWMASS21-CompF1_CompF0-EF0_EF0-055.pdf
https://arxiv.org/abs/2104.06573
https://arxiv.org/abs/2106.13593


HEP-CCEStatus of Ports for Testbeds

10

CUDA HIP Kokkos SYCL OpenMP Alpaka std::par

Patatrack not by CCE

WireCell partial

p2R OpenACC

FastCaloSim

ACTS

Done

Under 
Development

Not Started



HEP-CCEATLAS FastCaloSim Testbed

11

Developed parallel version (CUDA) of ATLAS parameterized 
calorimeter simulation
Ported to Kokkos, SYCL, std::par, OpenMP (in progress)
Same source code runs on four different platforms
           (x86 CPU, NVIDIA, AMD, Intel GPU)
Main results:  
● NVIDIA CUDA best performance, used as reference
● Performance limited by GPU offloading overhead

○ need to increase GPU work size, e.g. batching together 
particles from many events

● GPU performance depends on physics process
● SYCL introduces little to no overhead
● Kokkos adds overhead particularly with AMD GPUs
● std::par kernels run 2-3x slower than CUDA for small 

kernels, but 30% faster than CUDA for large ones
○ memory ops to/from AMD hosts 20-50x worse than Intel

arXiv:2103.14737
better

better
better

Kokkos

SYCL

https://arxiv.org/abs/2103.14737


HEP-CCECMS Patatrack Pixel Tracking Testbed
A frozen, standalone version of CMS Heterogeneous pixel track and vertex reconstruction

1. Copy the raw data to the GPU
2. Run multiple kernels to perform the various steps
3. Take advantage of the GPU computing power to improve physics

a. fit the track parameters (Riemann fit, broken line fit) and apply quality cuts
b. reconstruct vertices

Parallelized with CUDA, HIP, and through Kokkos (plus Alpaka, @CERN)
○ Run on x86 CPUs, AMD+NVIDIA GPUs

Main results: 
● NVIDIA V100 ~4.5x faster than Intel Skylake
● Kokkos versions 1.5-3x slower than direct CUDA
● Automatic memory management  (“CUDA unified memory”)

3x slower than explicit GPU transfers

12

better
better



HEP-CCEP2R (Propagate-to-Radial)
● A miniapp (~1k lines of standalone code) running “backbone” functions for track fitting 

● Kernels for track propagation and Kalman update in the radial direction
● Extracted from a full application (mkFit)

● Intend to explore more technologies with a lightweight program
○ TBB, CUDA, HIP,, Kokkos, Alpaka, std::par, SYCL, OpenACC

● Performance compared on NVIDIA V100, AMD MI-50 and Intel GPUs 
○ Same source code to run on all platforms 

13

AMD GPU (MI-50)

better

NVIDIA GPU(V100) Intel GPUs

better

better

*All throughput exclude data-transfer time



HEP-CCEWire-Cell : LArTPC Simulation
Parallelized 2D FFT Convolution-based LArTPC Simulation:

● part of Wire-Cell Toolkit (WCT) C++17 software package for 
Liquid Argon Time Projection Chamber (TPC) simulation, signal 
processing, reconstruction and visualization.

Main results: 
➢ Kokkos implementation achieved moderate speedups cf. 

original CPU on multicore CPU, AMD and NVIDIA GPUs 
when running single process 

➢ Further speedups by running multiple processes to share 
the GPUs
○ because GPUs are under-utilized with one process

➢ SYCL implementation achieved similar performance to 
Kokkos on NVIDIA GPUs. 
○ tests on AMD GPUs are ongoing

14

Kokkos

better
better



HEP-CCEConclusion
● The evolving computing landscape utilizing heterogeneous architectures (GPUs, FPGAs etc. ) poses 

challenges for HEP workflows.
○ Development of scientific code is at a crossroad leaving the convenient era of x86 only code
○

● Portability is a major consideration for such software adaptation. 

● Community solutions for portability are needed to continue writing scientific code efficiently with a 
large and not always professionally trained user community

● Experiences with several representative testbeds and portable programming models indicate that 
○ Different portability solutions have their own pros and cons. 
○ There is an overhead in implementing the portability layers in the code, but being able to run the 

same code across different architectures may be worth the effort. 
○ Best portability solutions may be use case dependent. 

● We think without them, software development could be costly to be able to run on available hardware 
infrastructure

● In future, as a community, we need to request and work on portability solutions with a very low entry bar 
for users, maybe even as an extension to C++ standards 

15



HEP-CCEFor More Details 

● Childers, Taylor, et al.  “Porting CMS Heterogeneous Pixel Reconstruction to Kokkos.” vCHEP 2021. 

arXiv:2104.06573v1. Slides. 

● Dong, Zhihua, et al.  “Porting HEP Parameterized Calorimeter Simulation Code to GPUs.” Frontiers in Big 

Data. arXiv:2103.14737v2. Slides.

● Kortelainen, Matti J., et al.  “Performance of CUDA Unified Memory in CMS Heterogeneous Pixel 

Reconstruction.” vCHEP 2021. Paper. Slides.

● Pascuzzi, Vincent R., Goli, Mehdi.  “Achieving Near Native Runtime Performance and Cross-Platform 

Performance Portability for Random Number Generation Through SYCL Interoperability.” arXiv:2109.01329

● Yu, Haiwang, et al.  “Evaluation of Portable Acceleration Solutions for LArTPC Simulation Using Wire-Cell 

Toolkit.” vCHEP 2021. arXiv:2104.08265v1. Slides.

● HEP-CCE Collaboration, Portability: A Necessary Approach for Future Scientific Software, Snowmass 

White Paper

16

https://arxiv.org/abs/2104.06573
https://anl.box.com/s/f80pjeh834vrv0z54qtj9f2tak2yeqag
https://arxiv.org/abs/2103.14737v2
https://indico.cern.ch/event/948465/contributions/4323701/attachments/2244954/3808352/FastCaloSim_for_vCHEP_2021_f.pdf
https://anl.box.com/s/zwnkpeklexv8970edv3opj7orfw5wbfg
https://anl.box.com/s/r1f3vr43uooi8pmb79ztmxqaje2efxxc
https://arxiv.org/abs/2109.01329
https://arxiv.org/abs/2104.08265
https://anl.box.com/s/xq96axpb4cckg65r9gjhjb3pjemwm7pj
https://arxiv.org/pdf/2203.09945.pdf
https://arxiv.org/pdf/2203.09945.pdf


HEP-CCE

Backup

17



HEP-CCEInterim Experiences With Portability Layers
Kokkos
● provides high-level abstraction of parallel hardware
● mature, well supported, good hardware support
● not the best performer

SYCL
● single source running on four hardware platforms
● actively developed, growing feature set and hardware support
● close to native CPU/GPU performance 
● supported by Intel, pushing it as part of C++ standard

std::par
● simple, clean programming model → best usability
● built on C++ standard → best (hope of) long-term support by compilers, vendors
● current performance on GPU inferior to other parallelization solution for small kernels, but 

better than CUDA for longer ones. Odd performance with AMD hosts is not understood
● supported by NVIDIA

18



HEP-CCEKokkos: Interim Experiences
● High level programming model

○ Could be able to give reasonable performance out of the box on new architectures different 
from CPU vector units or GPUs

● Backends for NVIDIA, AMD and Intel GPUs, pThreads and OpenMP, Serial CPU 
● APIs of earlier versions have been very stable
● Responsive developer community
● Depending on complexity of code, speed can approach that of native backend

○ but usually falls short as complexity and feature use increases
● Current challenges for use in HEP data processing frameworks

○ Requires a compiled runtime library that supports exactly one device architecture
○ CPU Serial backend is thread safe but not thread efficient (one mutex to rule them all)

■ Efficiency is being improved
○ Provides multidimensional array data type, but no special support for structured data

■ I.e. no help for crafting (Ao)SoAs, jagged arrays
○ No unified, portable interface for FFT algorithms

■ Such interface is being worked on

19



HEP-CCESYCL : Interim Experience and Feedback

20

C++-based API makes translation/code-conversion 
relatively straightforward

∙ Single-source (CPU, GPU code together)
∙ dpct (CUDA, HIP -> SYCL) conversion tool

DAG-based runtime satisfies inter-kernel 
dependencies (buffers)

∙ USM requires more explicit control from developer, 
but generally more performant

Integrates well with existing Makefile and CMake 
projects

∙ Compile SYCL code separately as libraries and link
∙ No need to recompile full stack

Demonstrated ability to run same source on four 
major vendor hardware

∙ Even without OCL or Level-Zero backends
∙ No experience yet with FPGAs

Numerous new features in 2020 specification (tested)
∙ Built-in optimized parallel reductions
∙ Work-group and sub-group algorithms for efficient 

parallel operations between work-items
∙ Sub-devices (currently limited to CPU with OCL but 

could prove extremely useful)
∙ Atomic operations aligned with C++20
∙ Improved interoperability for more efficient acceleration 

of third-party libraries (open or proprietary)

Still growing ecosystem (as of 31/10/21)



HEP-CCEstd::par : Preliminary Investigations
● NVIDIA nvc++ compiler is new and undergoing continuous development

○ can't compile ROOT yet
○ not well integrated with cmake - requires wrapper scripts to fix
○ some things work in standalone examples don't work in more 

complex environments with multiple shared libraries built with 
different compilers

○ could not exercise multicore backend
● Offers very interesting upgrade / sidegrade path

○ CPU -> GPU and multicore
○ GPU (CUDA) -> CPU/multicore

● Very simple changes to CUDA code
○ requires memory allocation on host by nvc++ for USM
○ kernel launch syntax

● Small kernels not as performant as CUDA
○ impact of USM? thrust? immature  compiler?
○ also slower build time

● Large kernels sometimes 30% faster than CUDA
● Memory ops with AMD hosts much slower than Intel
● Similar speed to original CPU

○ sometimes slightly faster!

21

better
better


