

New Materials and Techniques for Neutrino Detection

Minfang Yeh Neutrino and Nuclear Chemistry

Snowmass, UW-Seattle, 07/17-26/2022

Liquid Scintillator Detectors

- Serve neutrino community since Reines and Cowan in 1950s
 - Stokes shift, photon-yield, timing structure, and C/H density determine the detector responses
- Next generation LS detector development \rightarrow directionality
 - Slow Scintillator: Timing separation of slow scintillation from fast Cherenkov
 - LiquidO: Stochastic light confinement; lossless scattering
 - Water-based Liquid Scintillator: Cherenkov and scintillation detection

S. Hans, J. Cumming, R. Rosero, S. Gokhale, R. Diaz, C. Camilo, M. Yeh, Light-yield quenching and remediation in liquid scintillator detectors, 2020 *JINST* 15 P12020

Slow Scintillator

- The properties of slow fluors or wavelength shifters to provide a means to separate Cherenkov light in time from the scintillation signal which allows for directional and particle ID information while also maintaining good energy resolution.
- Readily applied to existing and planned large-scale liquid scintillator instruments without the need of additional hardware development and installation.

Similar spectra are shown for pyrene (left), used as a primary fluor with a concentration of 4g/L in LAB; 9,10-diphenylanthracene (DPA) (lower left) used as a secondary fluor at 30mg/L together with 2g/L of PPO in LAB; and 1,6-diphenylhexatriene (DPH) (lower right) as a secondary fluor at 10mg/L together with 2 g/L of PPO in LAB.

omed in time spectrum for 4 g/L acenapththene in LAB with clear Cherenkov peak.

Nu2022

MINI-II:10L~1.5cm pitch

inducing light (lossless) to a point...

Water-based Liquid Scintillator

- WbLS, initiated in 2010, is a novel detector liquid (flexible LS%), well characterized: (ORCiD: **0000-0003-2244-0499**)
 - *Scintillation* provides the energy resolution necessary to get above most radioactive backgrounds and the ability to see slow-moving recoils
 - *Cherenkov* enables event direction reconstruction and background discrimination at low energies
- Principle proven and advancing R&Ds at several institutes; in prep for prototyping tests
 - 1-ton Testbed (BNL, FY22), 4-ton Eos (LBNL, FY23) and 30-ton Demonstrator (BNL, FY23)

400-liter SANDI

WO DO

comm

at ANNI

• ANNIE (SANDI), WATCHMAN, THEIA

iter

• (new)T2K/ND, LiquidO

Benchtop R&D

Modern Metal-doped LS Neutrino Map

Loading isotopes into LS greatly enhances the physics implication; the challenge is the addition of the inorganic metallic compounds, typically in the form of salt, to the organic scintillator solvents

- Conventional isotope loading methods
 - A mediator with high solubility for inorganic salt compounds as alcohols (Chooz)
 - Organometallic complex, which is soluble in the LS.
 - Carboxylates (Savannah River, LENS, Palo Verde, Daya Bay, RENO)
 - Diketone or phosphor-organic ligands (LENS, Double Chooz)
- New isotope-loading techniques
 - M-doped WbLS
 - New organocomplex
 - Quantum dot

Metal-doped Water-based Liquid Scintillator

- A simpler approach to add the metal in aqueous solutions directly into liquid scintillators using principle derived from Water-based Liquid Scintillator
- User cases: Li, Gd, Te, K, Fe, W in several frontiers for neutrinos, nonproliferation, $0\nu\beta\beta$, calibration, calorimetry

M. Yeh. Snowmass

• A transformative technique for LSC cocktail (environmental and safeguard) <u>PROSPECT Li-doped LS</u> <u>Li-doped Plastics</u>

New Organocomplexing Ligands

- A method developed from 0vββ (SNO+) for higher loading of tellurium into liquid scintillator.
- An organocomplex using butanediol in conjunction with N,N-dimethyldodecylamine (DDA), which acts as a stabilisation agent.
- Stability of the loading has been demonstrated to be at least on the timescale of years; a highly scalable and economical approach.
- Further advances in purification techniques could provide a practical path to realising sensitivity to the nondegenerate normal mass ordering.

Quantum Dots

- Introduced from semiconducting nanocrystals in which the optical and electrical properties of the quantum dots are directly proportional to their size through resonance process (*tunable emission*).
- The most commonly used quantum dot cores are binary alloys such as CdS, CdSe, CdTe, and ZnS.
 - neutron-enhanced isotopes (113Cd) and (106,116Cd) and Se, Te, and Zn, which are present in common quantum dot cores, $0\nu\beta\beta$ candidates.
- Colloidal suspension instead of homogeneous mixing, which could cause aggregation in the concentrated solutions over long time scales.
 - *Mitigated by incorporating with chelating agents or WbLS surface active agents?*
- limitations in use for particle physics detectors are probably cost and availability in large quantity (ton).

Summary

- Liquid scintillator instrumentation has been largely advanced over the past decades
 - New materials with competitive performance, less chemical hazard, and better material compatibility
 - Advanced detector development allowing Cherenkov directionality from scintillation emission
- Advanced metal loading techniques with
 - Improved stability
 - Reduced light-yield quenching introduced from high mass doping
- A 10s kiloton-scale (water-based and/or metal-doped) liquid scintillator detector, sensitive to directionality, enables a broad neutrino program complementary to other detector technologies.

Target	Loading (mass)	Potential Applications
Indium	>8% In	Solar ν
Tellurium	> 6% Te	0 uetaeta
Lithium	0.1% ⁶ Li	Reactor $\bar{\nu}$; excellent PSD
	>0.2% ⁶ Li	Reactor $\bar{\nu}$; super PSD with improved optics
Boron	>0.5%	Dark Matter veto, reator $\bar{\nu}$
Potassium	>1%	Calibration for LS detectors
Iron, Strontium	ppm to 1%	Nuclear waste management,
		enviromental tracers
Gadolinium	0.1% Gd	Dark matter veto
		Reactor monitoring
		Reactor $\bar{\nu}$ oscillations
High-Z elements	10-15%Pb	Solar ν
_		Calorimeters
		Medical QA/AC

