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Liquid Scintillator Detectors

e Serve neutrino community since

Reines and Cowan in 1950s "I Coscate
» Stokes shift, photon-yield, timing ‘T J
structure, and C/H density determine 8 Ve
the detector responses 1
. = .
* Next generation LS detector =l A
development — directionality O £| ¢
* Slow Scintillator: Timing separation I *1 -
of slow scintillation from fast S,
Cherenkov I Donor Fmission Acceptor
. . . . L L LAB slow PPI())
* LiquidO: Stochastic light
COl’lﬁl’lemel’lt, IOSSIGSS Scattel'lng S. Hans, J. Cumming, R. Rosero, S. Gokhale, R. Diaz, C.
. . . . (;argilo, M Yeh, Light-yield quenching and remediation in
° Water_based quu1d Sc1ntlllat0r‘ liquid scintillator detectors, 2020 JINST 15 P12020

Cherenkov and scintillation detection
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Slow Scintillator

* The properties of slow fluors or wavelength shifters to provide a means to separate
Cherenkov light in time from the scintillation signal which allows for directional and
particle ID information while also maintaining good energy resolution.

* Readily applied to existing and planned large-scale liquid scintillator instruments
without the need of additional hardware development and installation.
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1,6-diphenylhexatriene (DPH) (lower
) as a secondary fluor at 10mg/L together
2 g/L of PPO in LAB.
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»med in time spectrum for 4 g/L acenapththene in LAB with clear Cherenkov peak.
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WbLS, initiated in 2010, is a novel detector liquid (flexible

LS%), well characterized: (ORCiD: 0000-0003-2244-0499)

» Scintillation provides the energy resolution necessary to
get above most radioactive backgrounds and the ability to
see slow-moving recoils

» Cherenkov enables event direction reconstruction and
background discrimination at low energies
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+  Cherenkov and «  Metal-loaded LS
Scintillation detection (ex. PROSPECT)
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Scintillator (ex SNO+ Daya Bay)
e Principle proven and advancing R&Ds at several institutes; | S o

. . 100 1000 10000
in prep for prototyping tests

Photon/MeV
e I-ton Testbed (BNL, FY22), 4-ton Eos (LBNL, FY23)
and 30-ton Demonstrator (BNL, FY23)

* ANNIE (SANDI), WATCHMAN, THEIA

(new)T2K/ND, LiquidO pr— =LBNL 4T Eos

Future home of BNL
30-Ton Demonstrator
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Modern Metal-doped LS Neutrino Map
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Loading isotopes into LS greatly enhances the physics implication,
the challenge is the addition of the inorganic metallic compounds,
typically in the form of salt, to the organic scintillator solvents

* Conventional isotope loading methods

* A mediator with high solubility for inorganic salt compounds as
alcohols (Chooz)

* Organometallic complex, which is soluble in the LS.

* Carboxylates (Savannah River, LENS, Palo Verde, Daya
Bay, RENO)

* Diketone or phosphor-organic ligands (LENS, Double
Chooz)

* New isotope-loading techniques
* M-doped WbHLS
* New organocomplex
* Quantum dot
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Metal -doped Water-based Liquid Scintillator

A simpler approach to add the metal in aqueous solutions directly into liquid
scintillators using principle derived from Water-based Liquid Scintillator

 User cases: L1, Gd, Te, K, Fe, W 1n several frontiers for neutrinos,
nonproliferation, Ovf3, calibration, calorimetry

* A transformative technique for LSC cocktail (environmental and safeguard)

PROSPECT L1 doped LS  Li-doped Plastics
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New Organocomplexing Ligands

* A method developed from Ovp3 (SNO+)
for higher loading of tellurtum into !

liquid scintillator: 0 Lo OTEDL L0
. ) ) ' o O @®TeBD2, 6g/L PPO
* An organocomplex using butanediol in 3 os o
conjunction with N,N- é - x 8 e
dimethyldodecylamine (DDA), which 2 . ; é o
acts as a stabilisation agent. E s o
» Stability of the loading has been By . 9.0
demonstrated to be at least on the 2 0s 8
timescal.e of years; a highly scalable and 7 0 X °
economical approach. ot N ¢
* Further advances in purification .
techniques could provide a practical path 0.1 1 10
to realising sensitivity to the non- Percent Loading (by weight)

degenerate normal mass ordering.
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https//wwwnano grk.com/what are quantum dots.php

Quantum Dots

* Introduced from semiconducting nanocrystals in which the optical and
electrical properties of the quantum dots are directly proportional to
their size through resonance process (tunable emission).

* The most commonly used quantum dot cores are binary alloys such as
CdS, CdSe, CdTe, and ZnS.

* neutron-enhanced isotopes (113Cd) and (106,116Cd) and Se, Te,
and Zn, which are present in common quantum dot cores, 0v[
candidates.

* Colloidal suspension instead of homogeneous mixing, which could
cause aggregation in the concentrated solutions over long time scales.

» Mitigated by incorporating with chelating agents or WbLS surface
active agents?

limitations in use for particle physics detectors are probably cost and
availability in large quantity (ton).
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Summary

* Liquid scintillator instrumentation has been [;]  Periodic Table of the Elements @ sensusssecon 73
largely advanced over the past decades Doe Samarmens e OERGEE

* New materials with competitive performance, Mgb I —— S P SM C‘ Aw
less chemical hazard, and better material Tﬁ‘% A Mjf il Gl o Gl el il
COmpatlblllty Sr|Y (| Zr [[Nb [Mo| Tc | Ru|Rh |Pd | Ag Cdﬁ%i" Sh(l Te|) I [ Xe

55 56 57| 72, 73] 74 75| 76 77 78 79 80| 81 82] 83 84 85
Ba|La|Hf | Ta|W [ Re|[Os| Ir |Pt | Au|Hg| TI{ Pb|)Bi | Po Rn

* Advanced detector development allowing i e e s e s
Cherenkov directionality from scintillation
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* Advanced metal loading techniques with =5 "%

Medical, LSC, Calibration, etc

* Improved stability
* Reduced light-yield quenching introduced

from high mass doping T e
Tellurium 6% Te Ov
* A 10s kiloton-scale (water-based and/or 5/ e T v B st improved opte
metal-doped) liquid scintillator detector, T TR r T
sensitive to directionality, enables a broad ™™ ™™™ [ el e
neutrino program complementary to other |~ | giﬁtﬁaﬁﬁif;i?%?pg ‘
detector technologies. Migh-Z clements [ 10-15%PD (S;ltm ==
Medical QA/AC
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