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Novel Sensors for Particle Tracking
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FIGURE 10 | Hit efficiency as a function of the bias voltage for RD53A
modules with FBK 3D sensors from second and third batches before and after
iradiation. The modules are tuned to a mean threshold of 1 ke.
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3D pixels : introduced by S.Y Parker in 1997

Left from : Progress in 3D Silicon Radiation

Detectors , Gian-Franco Dalla Betta and Marco Povoli,
Frontiers in Physics, June 2022 | Volume 10 | Article
927690
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Left bottom from: «Novel 3D Pixel Sensors for the Upgrade of
the ATLAS Inner Tracker », Stefano Terzo, Maurizio Boscardin et
al., Frontier In Physics, April 2021, Volume 9, Article 624668
(Silicon 3D)

The concept can be generalized to other material systems

3D silicon pixels are optimized for radiation hardness with
silicon process compatibility
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* Inthis case Lc is much lower than the thickness of the pixels , so we
FIGURE 11 | Hit efficiency as a function of the bias voltage for RD53A have a number of generated carriers equal to : Nc ~ Thickness , we
modules with SINTEF 3D sensars from run four before and after irradiation. tL th tL Ld
The sensors have a 50 = 50-1E pixel geometry. For better visibility the data of canse Cso a €<
DB1-2 before iradiation (black circles) is shifted by ~1 V. * Improving CCE charge collection efficiency by acting on the aspect
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ratio which is not possible using a planar configuration Lc/Thickness
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3D silicon sensors (credit G.F. Dalla Betta)

* 3D sensors are the most radiation-hard silicon detectors
* First installed in the ATLAS IBL, they will equip the innermost tracking layers of ATLAS and CMS detectors at HL-LHC
e They are efficient up to very large irradiation fluences at low voltage y’ s

(hence low power dissipation) | 3D trench Weighﬂn::;::mm)

e For future applications, advanced designs should be optimized \ ' ‘ ATk
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* Very small-pitch 3D sensors can effectively counteract charge electric and weighting field distributions for enhanced
trapping and yield moderate charge multiplication at timing performance (~11 ps time resolution recently
relatively low voltage even before irradiation proved in samples irradiated at 2.5x10%® neq/cmz)

G.-F. Dalla Betta et al. , IEEE NSS 2019, N30-02  SNOWMASS 2022 (July) R. Mendicino et al, NIMA 927 (2019) 24
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3D diamond pixels

Diamond detectors : within the framework of RD 42 (CERN) since 1994
* 3D diamond pixels is the evolution
* Electrodes fabricated by graphisation using femtosecond lasers
e Conductive electrodes are obtained
* Optimized for Radiation Hardness , with improved time resolution

See, Lucio Anderlini et al., Fabrication and Characterisation of 3D Diamond Pixel

Detectors With Timing Capabilities, Frontiers in Physics, November 2020 | Volume

8 | Article 589844

Figures and tables: derived from :J W Tsung et a/ 2012
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Charge Collection Distance,
d : thickness of the detector

d

More generally the free drift length is defined

by :

1/X = Z Nt ot where ot is the capture cross
section of the trap and Nt is its concentration
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(b) 24 GeV proton irradiation.

Si Diamond
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e Similar effective masses.

Mot of these are extracted from: J W Tsung et al 2012 JINST 7 PO9009
| and d are necessary to calculate the energy deposit in the layer

I= mean excitation energy
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DoTPiX
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Figure 1: The operational principle of the DoTPiX structure within a pixel array (row and
column); the array readout is similar to those of CMOS sensors, with detection, readout,
and reset modes. The end of column is connected to a preamplifier, for digital or hit/no hit
readout mode. Power dissipation occurs only during readout, due to the biasing scheme.
In detection mode, Vgate < Vdrain and Vsource, to collect holes in the buried gate.
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Figure 2: For the DoTPiX project: (left) the TCAD simulation structure; (center) Ge hole
guantum well, and (right) results of the processing (on a full wafer), the deposition of a thin
Ge layer. This results from electron microscopy, STEM Energy Dispersive X Spectrometry
(STEM-EDX).The Ge concentration reaches 95 percent in the 21 nm thick buried layer.The
wafer prepared this way should be CMOS compatible with some mitigation of the thermal
budget of the process.

*  Proposedin 2017, derived from another structure (TRAMOS 2010) : goal ultimate point to point spatial resolution ( ~ 1um)
* See:N.T. Fourches, “Ultimate Pixel Based on a Single Transistor With Deep Trapping Gate®, IEEE Trans. on Electron Devices 64, pp. 1619-1623 (2017).

https://doi.org-98/10.1109/TED.2017.2670681.

*  Accumulation of holes in the buried Ge layer , modulation of the source-drain current in read mode. No power dissipated in detection mode

* Upto now, simulations (TCAD) have shown the operational capabilities of the device. UHV-CVD growth (C2N) is now under way to obtain a Si/Ge On
Silicon structure , and with some CMOS similar processing a testable device. Thermal budget is one of the key parameter.

* GEANT4 simulations have shown that for thin devices one micron squared pixels are close to the optimum.
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Thin Film detectors
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From : Potential of Thin Films for use in Charged

* Optimized for cost effective large area, and material choice Particle Tracking Detectors, J. Metcalfe et al.
* Flexible substrate is one of the objectives https://doi.org/10.48550/arXiv.1411.1794

* Use material deposition techniques and growth with a large choice of materials
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Scintillating Quantum Dots in GaAs for Charged Particle Detection
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The optimisation diagram ...

Timing measurements

Scintillating o
Versatility, large area QD in GaAs Radiation hardness
3D diamond : : :
Take into consideration the very
Thin Film 3D silicon front end_ pelectronics readout
iX ? e .
Point to point resolution DotPiX . Monolithic integration

Low power dissipation
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Thank you for your attention



