

R&D considerations on lightweight mechanics

- The need
- Current activities & Future R&D
- Conclusions

Andreas Jung

based on the Snowmass White paper on mechanics [arXiv:2203.14347] (E. Anderssen, A. Jung, S. Karmarkar, A.M. Koshy, E. Vaca, A. Wong)

Snowmass Seattle workshop

July 19th, 2022

Future colliders (FCC-hh like)

High-luminosity phase of the LHC as example in this talk, but future colliders

- Momenta and angular ranges up by 10x and 2x
- Challenging for forward tracking/detectors
- Pile-up of a thousand results in very harsh conditions

Pixel Layer dose (3.7cm)	HL-LHC 3ab ⁻¹	FCC 3ab ⁻¹	FCC 30ab ⁻¹	FCC (2.5cm) 30ab ⁻¹
$\times 10^{16} n_{eq} cm^{-2}$	1.5	3	30	70
Dose (MGy)	5	10	100	220

Example of the HL-LHC upgrades as example:

Š

- Support structures need to be optimized, light-weight \rightarrow minimal mass possible, highly thermally conductive
- CMS HL-LHC upgrades as example

R&D considerations on lightweight mechanics

(b)

Material budgets & mechanics

- Substantial R&D on all fronts to make a FCC-hh detector a reality
- Support & Cooling constrains Tracker performance, e.g. thermal runaway
- Mechanics is significant fraction of the material budget
- Lowest mass possible requires new approaches to an old topic

- Can improve b-ID efficiencies by 2-3% per b-jet and high b-jet multiplicity ~10-15%
- Significant improvement by novel approach, b-ID relevant for di-Higgs (priority @FCC-hh)

Impact of tracker mechanics...

- Tracker of the HL-LHC is a very significant fraction of the total CMS upgrade budget
- Support & Cooling is the constrain in which Tracker is operated, e.g. thermal runaway
- Mechanics is sizeable fraction of the material budget
- Requires detailed FEA & mock-up's to understand and verify experimental measurements

Composites Manufacturing & Simulation Center

The facilities at Purdue: CMSC

Completed in summer 2016:

Composites Manufacturing & Simulation Center

- Composite manufacturing & simulation center (CMSC)
- Multi-disciplinary center: Aeronautics, Chemical E, Materials E, Aviation Tech, Computer graphics

A Purdue Center of Excellence:

A. Jung

- Experts in simulation as a decisionmaking tool for composites
- Dassault Systemes Simulation Center of Excellence
- Process-specific engineering workflows

Facilities at Purdue: CTRC & PSDL

Cooling Technologies Research Center:

 Multi-disciplinary center to study micro-channels, fluid dynamics, cooling (air & fluid), thermal interface materials, etc.

Purdue Silicon Detector Laboratory:

- Large clean rooms for automated pixel module assembly & electronic tests
- Thermal conductivity setups, etc.

- Various aspects of thermal management relevant for the applications at LHC
- Common 2-phase CO₂ cooling box setup

https://engineering.purdue.edu/CTRC/research/index.php

Current activities

A. Jung

What structures are we involved with? (HL-LHC Upgrade)

Large Support Structures – light-weight but rigid

- 1. Boundary Tracker Support Tube (CMS)
- 2. Inner Tracker Support Tube (CMS)
- 3. Inner Tracker Service Cylinder (CMS)
- 4. End Cap Quarter-Shells (ATLAS)

Small Structures - extremely flat and thin

- 1. Pixel Dees Support Structure (CMS)
- 2. High-TC flat sheets for modules (CMS)

Irradiation campaigns:

- In collaboration with US TFPX institutes (Cornell, Rice, others)
- Open to European institutes, e.g.
 Zuerich has sent samples in the past

Composites Manufacturing A Simulation Center **Process & Performance Simulation**

- Use simulation and prediction based on material characterization to ensure accurate prediction of final part performance
- Applied to CMS structures already with full chain of tool compensation, machining, cure and load test

0---F

0.5

FEM

0.2

-- Exp

A. Jung

Displacement [mm]

Thermal conductivities Composites Manufacturing & Simulation Center

 \rightarrow UG student driven activities, low-cost but precise \rightarrow High pressure curing to boost TC, factor 2 improvement \rightarrow Additional fillers to boost TC while maintaining mechanical strength \rightarrow Method & Results to be submitted to JINST soon...

- \rightarrow High pressure samples increase volume fraction to 72%
- \rightarrow Microscopies to measure volume fractions

Heat sink Cooling fluxmeter made of copper, has 6 equidistant thermistors

- Heating flux-meter made of copper with 6 thermistors
- Two spring-system to ensure consistent pressure
- Resistive heater
- Copper flux-meters are thermally isolated from the case using Airex

Sample/	Thermal	Interface thermal resistance	Reduced χ^2	Expected value			
Direction of	conductivity	of Flux-meter-TIM-Sample	of the	of k [W/mK]			
measurement	(k) [W/mK]	$(R_{\rm int})$ [Km ² /W]	linear fit				
K13C2U+EX1515 carbon fiber composite (Unidirectional)							
<i>x</i> -axis	(320 ± 28)	$(1.8 \pm 0.4) \cdot 10^{-5}$	0.83	318 [3]			
y-axis	(6.0 ± 2.6)	$(3.8 \pm 2.8) \cdot 10^{-4}$	0.17	0.53 [3]			
z-axis	(1.09 ± 0.15)	$(-6.0 \pm 17.0) \cdot 10^{-5}$	0.05	0.53 [3]			
z-axis	(2.21 ± 0.31)	$(3.0 \pm 7.0) \cdot 10^{-5}$	0.09	1.2 [3]			
(20 bar)							
K13D2U+EX1515 carbon fiber composite (Unidirectional)							
<i>x</i> -axis	(376 ± 31)	$(1.7 \pm 0.3) \cdot 10^{-5}$	0.65	410 [3]			
y-axis	(7.5 ± 4.4)	$(3.9 \pm 3.5) \cdot 10^{-4}$	0.01	0.53 [3]			
z-axis	(1.44 ± 0.24)	$(1.4 \pm 1.4) \cdot 10^{-4}$	0.44	0.53 [3]			
z-axis	(2.79 ± 0.46)	$(2.0 \pm 9.0) \cdot 10^{-5}$	0.43	1.2 [3]			
(20 bar)							
Other materials							
IM7 8552	(8.0 ± 2.3)	$(1.2 \pm 0.8) \cdot 10^{-4}$	0.85	5.50 [20]			
(x-axis)							
Celstran© PPS-CF50-01	(0.34 ± 0.08)	$(-2.2 \pm 4.6) \cdot 10^{-4}$	1.09	0.39 [21]			
(z-axis)							

Sample

Composites Manufacturing & Simulation Center Future R&D work

- R&D efforts on low-mass support structures with integrated services for silicon detector systems
- Targeting the Basic Research Needs for HEP by DOE topic of "Realize scalable irreducible-mass trackers", thrust 2 on low mass detector system.
- Leverage current activities on high-TC, accurate predictive manufacturing of large composite structures, etc.
- Connections with companies engaged in high-TC carbon foam development

- Multi-functional composite structure research
- Integration of cooling and other services into the support structures to reduce mass further
- Novel approach to mechanics design from inception phase of the detector

Going into the future of mechanics

→ Scalable large mechanics structures

 \rightarrow Multi-functional support structures \rightarrow Ease integration, applies also to calorimetry [arXiv:2203.04312]

- \rightarrow FEA, prototypes, iterative process.
- → Consistent approach to better controlled manufacturing process, eases assembly.
- → Especially true the larger the structures become, integration is a "hassle"

- → Collaboration with material sciences, companies for novel materials, and latest techniques.
- → Example: ML for optimization with HEP inputs, excites future generation

Composites Manufacturing & Simulation Center Mechanics community

Exchange of ideas & progress across existing collaborations:

- Snowmass process, but no dedicated forum in the US to exchange on this
- Internationally we have the Forum on Tracking Detector Mechanics
 - 10th iteration in 2022: <u>https://indico.cern.ch/event/853861/</u>
 - ~70 participants
 - Form a "CERN RD Mechanics" ...

Mechanics community

Exchange of ideas & progress across existing collaborations:

- Snowmass process, but no dedicated forum in the US to exchange on this
- Internationally we have the Forum on Tracking Detector Mechanics
 - 10th iteration in 2022: <u>https://indico.cern.ch/event/853861/</u>
 - ~70 participants
 - Form a "CERN RD Mechanics" ...

My own opinions

In the past largely focused at national labs, single Universities.

- Community building in the US around the US participants of the Forum and Snowmass, consistent funding is a problem.
- Establish more long term funding as a future around existing "seeds" ?
- Interdisciplinary R&D can realize additional synergistic activities
- Future detectors are huge, mechanics is a significant fraction of material and also of the cost – serious / critical risks related to material availability
 - Ample evidence in the past years, not going away

A. Jung

- Detector mechanics can play a significant role in a detector's performance, improvements require:
- In-depth study of total mass
- Novel ways to reduce the total mass

Over the past years established Purdue collaborations to benefit HEP tracker mechanics activities and R&D efforts

- → For now: the "Forum on tracker mechanics" is the ideal place to exchange progress on detector mechanics at boundary of material science, engineering and physics.
- \rightarrow Many opportunities for external collaborations
 - \rightarrow Low mass detectors
 - \rightarrow High-performance cooling

A. Jung

Early results on structures

• Structure mass is 2.77kg

1130mm

. Loaded mass is large, shows deflection more easily

3210mm

- . Very good agreement with the FEA
- \rightarrow Precision manufacturing guided by FEA

A. Jung

ITST 🗆

Service cylinder

Pixel support structures

- \rightarrow Disc-like support structures made from Carbon Foam & Fiber
- \rightarrow FEAs use TC measurements as inputs
- → Capable of cooling all ~1800 pixel modules
- → Carbon is light-weight, and strong _____

1st half dee prototype, in collaboration with Cornell University

A. Jung

3-ply

skin

