Future of Hadron Spectroscopy at the Large Hadron Collider

Matt Durham durham@lanl.gov

Community Summer Study

July 17-26 2022, Seattle

The New Particle Zoo

- LHC has found dozens of new hadrons: quarkonia, mesons, baryons
- A significant fraction of these DO NOT fit into conventional framework:

Diquark-diantiquark PRD 71, 014028 (2005)

PLB 662 424 (2008)

Hadrocharmonium/ adjoint charmonium

PLB 666 344 (2008) PLB 671 82 (2009)

Hadronic Molecules

PLB 590 209 (2004) PRD 77 014029 (2008) PRD 100 0115029(R) (2019)

Mixtures

$$X=a\ket{car{c}}+b\ket{car{c}qar{q}}^{ ext{\tiny PLB 578 365 (2004)}}_{ ext{\tiny PRD 96 074014 (2017)}}$$

https://www.nikhef.nl/~pkoppenb/particles.html

Date of arXiv submission

patrick.koppenburg@cern.ch 2022-07-05

Recent examples

- LHCb observes new $P_{\psi s}^{\Lambda}(J/\psi \Lambda)$ state consistent with $c\bar{c}uds$
- Close to $\Xi_c^+ D^-$ mass threshold

Recent examples

• Close to $\Xi_c^+ D^-$ mass threshold

• CMS confirms X(6900) and finds other peaks in di- J/ψ mass spectrum

Recent examples

- LHCb observes new $P_{\psi s}^{\Lambda}(J/\psi \Lambda)$ state consistent with $c\bar{c}uds$
- Close to $\Xi_c^+ D^-$ mass threshold

ATLAS also confirms X(6900) and finds structure in $\psi(2S) + J/\psi$ mass

• Rich spectrum of $c\bar{c}c\bar{c}$ states accessible with dimuons.

Goals of hadron spectroscopy

Overall goal: a complete, predictive understanding of hadrons allowed by QCD

- Experimental tools for reaching goal:
 - High statistics data sets
 - Required to access rare states, such as multi-heavy hadrons
 - Still lots to do with exotics in bottom sector, potentially $b\overline{b}b\overline{b}$ spectrum
 - Upgraded detectors
 - Take advantage of luminosity upgrades, separate signals from background, explore new production phase space
 - New approaches
 - Analysis techniques that take advantage of increased stats, heavy ion collisions, UPCs

Luminosity improvements

Detector upgrades - ALICE

ALICE for Run-3: CERN-LHCC-2013-020

- Continuous TPC readout with GEMs greatly increases event rate: ~1Mhz in pp and ~50kHz in PbPb
- Upgraded vertex detectors at mid and forward rapidity

Detector upgrades - ALICE

ALICE for Run-3: CERN-LHCC-2013-020

- Continuous TPC readout with GEMs greatly increases event rate: ~1Mhz in pp and ~50kHz in PbPb
- Upgraded vertex detectors at mid and forward rapidity

ALICE3 for Run-5: CERN-LHCC-2022-009

- Superconducting magnet and all silicon tracking
- Full PID with fast silicon and aerogel RICH
- EMCal coverage over full azimuth
- Charm hadronization into multi-heavy sates and exotics is a major focus → huge potential

Detector upgrades - LHCb

• Full streaming readout

- Advancing the state-of-the-art for collider detector data acquisition
- Samples full delivered luminosity at 40MHz

Increased granularity in tracking

• Improves tracking performance and enables access to central heavy ion collisions (>30% centrality)

Detector upgrades - LHCb

Plans for upgrade 2 well underway: CERN-LHCC-2021-012

• Full streaming readout

- Advancing the state-of-the-art for collider detector data acquisition
- Samples full delivered luminosity at 40MHz

Increased granularity in tracking

- Improves tracking performance and enables access to central heavy ion collisions (>30% centrality)
- Magnet station tracker for coming in Run 4.
 - Access to soft pions from e.g. $X(3872) \rightarrow J/\psi \pi \pi$ and D^* decays

ATLAS and CMS upgrades

ATLAS Phase 2: CERN-LHCC-2015-020

Upgraded Trigger and Data Acquisition System

Single Level Trigger with 1 MHz output Improved 10 kHZ Event Farm

Electronics Upgrades

- On-detector/off-detector electronics upgrades of LAr Calorimeter, Tile Calorimeter & Muon Detectors
- 40 MHz continuous readout with finer segmentation to trigger

High Granularity Timing Detector (HGTD)

- Precision time reconstruction (30 ps) with Low-Gain Avalanche Detectors (LGAD)
- Improved pile-up separation and bunch-by-bunch luminosity

New Muon Chambers

Inner barrel region with new RPCs, sMDTs, and TGCs
 Improved trigger efficiency/momentum resolution, reduced fake rate

New Inner Tracking Detector (ITk) • All silicon with at least 9 layers up to Inl = 4

Less material, finer segmentation

Additional small upgrades

- Luminosity detectors (1% precision)
- HL-ZDC (Heavy Ion physics)
- Upgraded detector to handle high pileup in pp collisions
- Improved tracking enhances mass resolution
- Upgraded electronics samples larger fraction of delivered luminosity

ATLAS and CMS upgrades

ATLAS Phase 2: CERN-LHCC-2015-020

Upgraded Trigger and Data Acquisition System

Single Level Trigger with 1 MHz output
 Improved 10 kHZ Event Farm

Electronics Upgrades

- On-detector/off-detector electronics upgrades of LAr Calorimeter, Tile Calorimeter & Muon Detectors
- 40 MHz continuous readout with finer segmentation to trigger

High Granularity Timing Detector (HGTD)

- Precision time reconstruction (30 ps) with Low-Gain Avalanche Detectors (LGAD)
- Improved pile-up separation and bunch-by-bunch luminosity

New Inner Tracking Detector (ITk) Additional small upgrades

- Luminosity detectors (1% precision)
 HL-ZDC (Heavy Ion physics)
- Upgraded detector to handle high pileup in pp collisions

All silicon with at least 9 layers up to Inl = 4

Less material, finer segmentation

- Improved tracking enhances mass resolution
- Upgraded electronics samples larger fraction of delivered luminosity

CMS Phase 2: CERN-LHCC-2015-010

- Expanded tracking over larger rapidity interval
- PID with combinational of pixel DE/dx and TOF allows $\pi/K/p$ separation down to $p_T\sim300$ MeV

New Muon Chambers

Inner barrel region with new RPCs, sMDTs, and TGCs

Improved trigger efficiency/momentum resolution,

New collision systems

- Interactions of exotic states with other particles produced in the collision provide new probes of their binding energy/structure: comover breakup and coalescence dominate in different multiplicity regimes
- Models predict drastically different production rates for compact tetraquarks vs hadronic molecules (see backup)

New collision systems

- Interactions of exotic states with other particles produced in the collision provide new probes of their binding energy/structure: comover breakup and coalescence dominate in different multiplicity regimes
- Models predict drastically different production rates for compact tetraquarks vs hadronic molecules (see backup)

New collision systems

- Interactions of exotic states with other particles produced in the collision provide new probes of their binding energy/structure: comover breakup and coalescence dominate in different multiplicity regimes
- Models predict drastically different production rates for compact tetraquarks vs hadronic molecules (see backup)

• First studies in heavy ion collisions show differences between exotic X(3872) and conventional charmonium $\psi(2S)$

Summary

- Hadron spectroscopy is a highly active of QCD research at the LHC.
 - Pace of discoveries is <u>accelerating</u>. No reason to believe it will slow.
- <u>All four</u> major experimental collaborations at the LHC are actively pursuing upgrades that will directly improve spectroscopy capabilities.
- Upgraded detectors, more data, different collisions systems, new techniques: all contribute to a full understanding of bound states allowed by QCD.

Los Alamos National Laboratory is supported by the US Dept. of Energy/Office of Science/Nuclear Physics and DOE Early Career Awards

BACKUPS

X(3872) in PbPb

Yield reaches up to $\sim 1\%$ of I/ψ yield

AMPT model: difference in molecule vs diquark-diquark coalescence gives dramatically different yields and centrality dependence:

 $N_{molecule} > N_{tetraquark}$

Transport calculation:
molecules have larger reaction rate,
formed later in fireball evolution

 $N_{tetraquark} > N_{molecule}$