
1

Harrison Prosper (Florida State U.)  
Sezen Sekmen (Kyungpook Nat. U.)   

Gökhan Ünel (UC Irvine - ATLAS)

and the ADL/CutLang team

Analysis Description 
Language: A DSL for 

HEP Analysis

Snowmass Community Summer Study 
16-27 July 2022, Seattle, USA

ADL white paper (CompF5, CompF7) : arXiv:2203.09886 
ADL Documentation and references : cern.ch/adl

https://arxiv.org/abs/2203.09886
http://adl.web.cern.ch/index.html


Thousands of analyses are designed by HEP experimentalists and phenomenologists. 
—> Tremendous source of information to serve future physics studies.

We appreciate all analysis preservation efforts by experiments and organizations (e.g. CERN 
Analysis Preservation Group). 
 
Preserving the physics content of analyses (the analysis logic) is particularly important.  Current 
practices include:

• Papers: Hard to describe in full detail.  Description detail non-uniform across analyses.

• Full analysis code: Hard to decipher <— Physics algorithm and technical operations are 

intertwined and handled together.

• Lightweight code / snippets: Better readability wrt full analysis code, but still based on general 

purpose languages (GPL), such as  C++ and Python.


Our proposal: Improve the clarity and accessibility of analysis logic, and thereby its preservation, 
by using a domain-specific language tailored for HEP analyses. 

Analysis logic preservation

2



Analysis Description Language (ADL) is a declarative domain specific language (DSL) that 
describes the physics content of a HEP analysis in a standard and unambiguous way. 

• External DSL: Custom-designed syntax to express analysis-specific concepts. Reflects 

conceptual reasoning of particle physicists.  Focus on physics, not on programming.

• Declarative: States what to do, but not how to do it.

• Easy to read: Clear, self-describing syntax.

• Designed for everyone: experimentalists, phenomenologists, students, interested public…


ADL is framework-independent —> Any framework recognizing ADL can perform tasks with it.

• Decouples physics information from software / framework details.

• Multi-purpose use: Can be automatically translated or incorporated into the GPL / framework 

most suitable for a given purpose, e.g. exp. analysis, (re)interpretation, analysis queries, …

• Easy communication between groups: exp., pheno, referees, students, public, …

• Easy preservation of analysis logic.

Analysis description language for HEP

3



ADL scope

• Event processing: Priority focus.

simple and 
composite 

object 
definitions (jets, 

muons, Ws, 
RPV stops, …)

event variable 
definitions (MT2, 

angular variables, 
BDTs…)

event selection 
definitions 

(signal, control, 
validation 

regions, …)

input: 

event 

content

output: 

event 
selection

Event processing…

4

• Analysis results, i.e. counts and uncertainties: Available

• Histogramming: Available.

• Systematic uncertainties: Within the scope. Syntax design in progress.

• Operations with selected events, e.g. background estimation, scale factor derivation: Very 

versatile.  Not yet within the scope. 



The ADL construct

ADL consists of

• a plain text file (an ADL file) describing the 

analysis logic using an easy-to-read DSL 
with clear syntax.


• a library of self-contained functions 
encapsulating variables that are non-trivial 
to express with the ADL (e.g. MT2, ML 
models).  Internal or external (user) 
functions.  

blocktype	blockname

		keyword1	instruction1 
		keyword1	instruction2

		keyword3	instruction3	#	comment

• ADL file consists of blocks separating object, 
variable and event selection definitions. 
Blocks have a keyword-instruction structure.

• keywords specify analysis concepts and 

operations.

5

ADL syntax with usage examples: link

LHADA (Les Houches Analysis Description Accord): Les Houches 2015 new physics WG report (arXiv:1605.02684, sec 17)

CutLang: Comput.Phys.Commun. 233 (2018) 215-236 (arXiv:1801.05727), Front. Big Data 4:659986, 2021   
                Several proceedings for ACAT and vCHEP

• Syntax includes mathematical and logical 
operations, comparison and optimization 
operators, reducers, 4-vector algebra and HEP-
specific functions (dφ, dR, …).  See backup.

cern.ch/adl

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL
https://arxiv.org/abs/1605.02684
https://arxiv.org/abs/1801.05727
http://adl.web.cern.ch/index.html


A very simple analysis example with ADL

#	OBJECTS

object	goodMuons

		take	muon

		select	pT(muon)	>	20

		select	abs(eta(muon))	<	2.4 
 

object	goodEles

		take	ele

		select	pT(ele)	>	20

		select	abs(eta(ele))	<	2.5 
 

object	goodLeps

		take	union(goodEles,	goodMuons) 
 

object	goodJets

		take	jet

		select	pT(jet)	>	30

		select	abs(eta(jet))	<	2.4

		reject	dR(jet,	goodLeps)	<	0.4

6

#	EVENT	VARIABLES

define	HT	=	sum(pT(goodJets))

define	MTl	=	Sqrt(	2*pT(goodLeps[0])	*	MET*(1-cos(phi(METLV[0])	-	phi(goodLeps[0])	)))


#	EVENT	SELECTION

region	baseline

		select	size(goodJets)	>=	2

		select	HT	>	200

		select	MET	/	HT	<=	1


region	signalregion

		baseline

		select	Size(goodLeps)	==	0

		select	dphi(METLV[0],	jets[0])	>	0.5


region	controlregion 
		baseline 
		select	size(goodLeps)	==	1

		select	MTl	<	120

ADL implementations of some LHC analyses: https://github.com/ADL4HEP/ADLLHCanalyses

https://github.com/ADL4HEP/ADLLHCanalyses


Running analyses with ADL

7

Multipurpose & framework-independent: Can be 
translated / integrated into any GPL / framework.

CutLang: C++ runtime interpreter for ADL. 

• Formal grammar parsing by Lex & Yacc.

• Based on ROOT.  Reads various TTree-like 

formats.  NanoAOD, Delphes, open data, etc.

• Jupyter kernel exists. 

• Used in several analyses for ATLAS, FCC,  

reinterpretation (via SModelS), open data, …

• Outputs cutflows, histograms, events, 

analysis description, i.e. provenance.

CutLang Github repository: https://github.com/unelg/CutLang 
Comput.Phys.Commun. 233 (2018) 215-236 (arXiv:1801.05727), 
Front. Big Data 4:659986, 2021 (arXiv:2101.09031),  
Several proceedings for ACAT and vCHEP

Physics information is fully contained in 
ADL.  Current compiler infrastructures 
can be easily replaced by future tools / 
GPLs / frameworks.

https://github.com/unelg/CutLang
https://arxiv.org/abs/1801.05727
https://arxiv.org/abs/2101.09031


ADL for analysis preservation

8

ADL is designed in the spirit of long-term analysis preservation:  


• Decoupled from analysis frameworks, portable, self-documenting, modular, domain-specific 
syntax, uniform structure.


ADL can be easily incorporated in the CERN Analysis Preservation (CAP) system:

• The CAP team has been following ADL since the beginning, and is very supportive.

 
Planning to build 3 web-based, searchable and citable databases for ADL content: 
Discussions ongoing with the CAP team.

• ADL analyses database: Host ADL files of implemented analyses


• ADL objects database: Host object definitions written in ADL (e.g. 2016 tight isolated electrons 
for CMS leptonic SUSY analyses, boosted medium Higgs from ATLAS, etc.)


• ADL functions database: Host external functions of non-trivial or non-analytical variables (ML 
discriminants, complex kinematic variables, efficiencies, etc.)



ADL helps to design and document a single analysis in a  
clear and organized way. 

But its distinguishing strength is in navigating and exploring 
the multi-analysis landscape.

9



Uses for analyses preserved via ADL

10

• Use existing analyses to design new ones: Answer questions such as “Which final states did the 
existing analyses look at?” ;  “Which final states are unexplored?” ; “How much overlap exists 
between my analysis and the existing ones?”


• Use existing objects: Directly implement in a new analysis, compare analyses choices, work with 
definition of the same object in different data tiers.


• Visualize & review analyses: Build graphs and tables from analyses using automated tools.

• Query analysis or object databases: Answer questions such as “Which analyses require missing 

ET > at least 300?” ;   “Which analyses use b-jets tagged with a certain criterion?” ;  “Which 
muons use isolation?” via automated query tools.


• Compare / combine analyses: Determine analysis overlaps, identify disjoint analyses or search 
regions; find the feasible combinations with maximal sensitivity; automate large scale 
combinations of analyses.


• Education: Provide a learning database for younger colleagues.


• Reinterpretation: p12.



Auto-generated graph of an ADL analysis (using graphviz)

11arXiv:2205.09597: CMS Search for Electroweak SUSY in WW, WZ and WH hadronic final states 

https://arxiv.org/abs/2205.09597


ADL allows practical exchange of experimental analysis information with the pheno community.

• Clear description of the complete analysis logic.

• Enables straightforward adaptation from experiments to public input event formats.

• Biggest difficulty is in reproducing an analysis is adapting object definitions:  

In ADL, e.g. just swap experimental object IDs with numeric efficiency maps.

• Event selections stay ~the same (can swap trigger selections with efficiencies)


• Generic structure available for expressing analysis output in the ADL file:  
Data counts, BG estimates, signal predictions —> counts, uncertainties, cutflows.

• Running CutLang puts preexisting results in histograms with the same format as the run 

output.  —> Direct comparison of cutflows, limit calculations.

• ADL could facilitate providing information on analysis results to HEPDATA or similar platforms.

ADL for reinterpretation

12



Expand practical use and physics applications: 

• Launch an analysis implementation and validation campaign for preservation and 

reinterpretation purposes; organize ADL hackathons; perform physics studies for future 
colliders with ADL/CutLang.


Extend the language scope: 

• ADL can already describe a large number of published analyses, but needs various extensions 

towards a domain-complete language, e.g. enhanced object handling, systematic uncertainties. 

Advance the infrastructures and auxiliary tools: 

• Build more formal compiler infrastructures with a layered design; have automated syntax 

verification; provide a toolkit for static analysis, queries, visualization; provide a setup for 
differentiable programming, …


Analysis preservation: 

• Work towards building formal databases for ADL analyses, objects and external functions.

What is next for ADL?

13



14

To conclude:

• ADL is an emerging approach with 

great potential for analysis 
preservation and reinterpretation.


• ADL and runtime interpreter 
CutLang so far show the feasibility 
of this approach.

• ADL syntax and tools are under 

constant development.

• We invite the HEP community to 

explore ADL/CutLang and provide 
feedback (mattermost channel).

ADL is a community effort !   
Everyone is welcome to join the development of the language and tools.

https://mattermost.web.cern.ch/signup_user_complete/?id=ocuxdq3xabr49p3x5wy1qj9a1y


15

Extra slides



ADL syntax: main blocks, keywords, operators 

16

Block purpose Block keyword
object definition blocks object
event selection blocks region
analysis or ADL information info
tabular information table

Keyword purpose Keyword
define variables, constants define
select object or event select
reject object or event reject
define the mother object take
apply weights weight
bin events in regions bin, bins
sort objects sort
define histograms histo
save variables for events save

Operation Operator

Comparison operators > < => =< == !=

 [] (include) ][ (exclude)

Mathematical operators + - * / ^
Logical operators and or not

Ternary operator condition ? truecase : 
falsecase

Optimization operators ~= (closest to) 
~! (furthest from)

Lorentz vector addition LV1 + LV2

LV1    LV2

ADL syntax rules with usage examples: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL

Syntax also available to write existing analysis results 
(e.g. counts, errors, cutflows…).

 
Syntax develops further as we implement 
more and more analyses.

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL


ADL syntax: functions

17

Standard/internal functions: Sufficiently 
generic math and HEP operations could be 
a part of the language and any tool that 
interprets it.

•Math functions: abs(), sqrt(), sin(), cos(), 

tan(), log(), …

•Collection reducers: size(), sum(), min(), 

max(), any(), all(),…

•HEP-specific functions: dR(), dphi(), deta(), 

m(), ….

•Object and collection handling: union(), 

comb()…

External/user functions: Variables that cannot 
be expressed using the available operators or 
standard functions would be encapsulated in 
self-contained functions that would be 
addressed from the ADL file and accessible by 
compilers via a database.

•Variables with non-trivial algorithms: MT2, 

aplanarity, razor variables, …

•Non-analytic variables: Object/trigger 

efficiencies, variables/efficiencies computed 
with ML, …

ADL syntax rules with usage examples: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL


Physics with ADL / CutLang

18

Designing new analyses:


• Experimental analyses:


• 2 ATLAS EXO analyses on VLQ and VLL 
ongoing with a customized version of CL.


• Phenomenology studies: 


• E6 isosinglet quarks at HL-LHC & FCC   
(Eur Phys J C 81, 214 (2021))


Implementing existing analyses:

ADL analysis database with ~15 CMS &  
ATLAS analyses: 
https://github.com/ADL4HEP/ADLLHCanalyses  
(another ~15 being implemented including CMS 
Snowmass analyses)

Using analysis implementations:


• Building a validation infrastructure for 
implemented analyses in collaboration with the 
SModelS team (W. Waltenberger et. al.)


• Mass produce signals, run analyses, compute 
limits, compare with existing limits 


• Reinterpretation studies:


• Integrated ADL/CutLang into the SModelS 
framework for calculating efficiency maps.


• Static analysis for nalysis queries, comparisons, 
combinations: (Which analyses require HT > at 
least 500?  Which have leptons?  Which 
analyses/regions are disjoint?)


• Automated tools under development 
arXiv:2002.12220, sec 17

https://arxiv.org/abs/2006.10149
https://github.com/ADL4HEP/ADLLHCanalyses
https://smodels.github.io/
https://smodels.github.io/
https://arxiv.org/abs/2002.12220


CutLang interpreter and framework

CutLang runtime interpreter: 


• No compilation of the analysis content.  
Directly runs the ADL file on events.   


• CutLang itself is written in C++, works in any 
modern Unix environment.


• Based on ROOT classes for Lorentz vector 
operations and histograms.


• ADL syntax parsing by Lex & Yacc.


• Includes parsing of various standard and 
external functions. <— Still requires 
automation.

G. Unel, A. M. Toon,  
A. Paul, N. Ravel,  
S.  Sekmen, J. Setpal,  
B. Örgen, et.al.

CutLang framework: interpreter + tools  
Event and external function inputs:


• Input events: via ROOT files. 


• multiple input formats: Delphes, CMS 
NanoAOD, ATLAS/CMS Open Data, LVL0, 
FCC. More can be ~easily added.


• All event types converted into predefined 
particle object types recognized by the 
runtime interpreter —> can run the same ADL 
file on different input types. 

<— working on automated matching of input 
object attributes in ADL & ROOT files.


• External functions input: Functions currently 
stored within the framework.

19

CutLang Github: https://github.com/unelg/CutLang

CutLang publications: arXiv:1801.05727, arXiv:1909.10621 
                                    arXiv:2101.09031

https://github.com/unelg/CutLang
https://arxiv.org/abs/1801.05727
https://arxiv.org/abs/1909.10621
https://arxiv.org/abs/2101.09031


CutLang interpreter and framework

20

Auxiliary tools:


• Datasets, cross sections, sample-specific 
weights input by text-based config files.


• Some scripts for combining output files and 
plotting are also available.


All these are native to CutLang framework and 
currently outside the scope of ADL.   
Work in progress.

CutLang framework: interpreter + tools 
Run output: 


• Results output via ROOT files.  Includes: 


• ADL file (for provenance tracking)


• A TDirectory per region including cutflows, 
bins and user-defined histograms.


• If existing results (counts, errors, cutflows) 
are specified in the ADL file, CutLang can 
record those in histograms similar to its run 
results.


• Saving selected event content at any analysis 
stage (e.g. for ML training)


• Selected quantities can be saved into a CSV 
files after an event selection.


