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Track Triggering using Pixels

¥ Goal: Develop an algorithm for finding high-momentum tracks using
silicon pixel detectors

P Massive stable charged particles will behave as muons and be triggered by
muon system

P Need silicon tracker-based triggering for short-lived particles
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Kinematics of Drell-Yan Production

¥ Drell-Yan pair production of massive charged particles tends to yield
momenta close to mass threshold (examples below from LHC)
P Phase-space suppression at momenta < mass
P Parton distribution and matrix element suppression at high momenta
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Kinematics of Drell-Yan Production

¥ Typical boost and life-time dilation factor near unity
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¥ Small-radius tracking increases acceptance for metastable charged particles
substantially



Efficiency "#$%%Proper lifetime

¥ Small-radius tracking increases acceptance for metastable charged
particles substantially, relative to muon trigger, in an interesting range of
proper lifetime
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¥ Conclusion insensitive to charged-particle mass (varied between 100 GeV and 900
GeV above) >



Discovery Reach @ HL-LHC (3 ab)

¥ Pure wino scenario in SUSY as a source of neutralino dark matter

P Almost degenerate chargino and neutralino yields chargino proper decay
distance ~ 6 cm [Low & Wang, &'()* 1408, (2014) 161]

P Signal event yields of 1000 events (upper curves) and 100 events (lower curves)
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Comparison to triggering on Initial State Radiation

¥ Substantial loss of acceptance when requiring a large transverse
momentum kick () from initial-state QCD radiation
P Rate suppressed by factor of 10 at high mass, and factor of 1000 at low mass
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Comparison to triggering on Initial State Radiation

¥ Substantial loss of acceptance when requiring a large transverse
momentum kick () from initial-state QCD radiation

P Mass reach reduced by 200-300 GeV if using ISR trigger than a track trigger
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Track Triggering using Pixels

¥ Goal: Develop an algorithm for finding high-momentum
tracks using silicon pixel detectors

¥ Requirements:
B Trigger particle with p; > 10 GeV
P barrel detector coverage (skip forward disks)

P No regions of interest pre-defined by other trigger objects, i.e. track

trigger should be standalone
P Latency of a few microseconds
b Ideally, trigger electronics should be on-detector
¥ self-triggering “smart detector”
¥ avoid reading out the full detector for trigger processing

¥ Design should be modular and segmented



Track Triggering using Pixels

Concept: use a large number of simple processing units

¥ Modular design of each processing unit that can be replicated in FPGAs
¥ Exploit parallel processing capability

¥ Effectively running a huge number of “threads” in parallel

Algorithm emulated in software

¥ Pileup hits from 200 collisions are parsed into two-dimensional “towers’

¥ Each tower is processed independently by identical circuits
10



Track Reconstruction

¥ Discussion of concept published:

¥ AVK, “+* -$.%/".012* 1#*3-#.456"* #-57489*-82* #499"#489*%$4.
H#-24%$*$464518%2" » NiétHinst. Meth. Phys. Res. A 957 (2020) 163427
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¥ Each hit processed by a specialized computing circuit
¥ Trajectories sorted by smoothness locally

¥ Information sharing between nodes to find smoothest trajectory globally
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Track Reconstruction using Pixels

¥ Discussion of concept published:

¥ AVK, “+* -$.*/".012* 1#*3-#.456"* #-57489*-82* #499"#489*%$48
#-24%%5*$464518*2" "ENhétBinst. Meth. Phys. Res. A 957 (2020) 163427
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¥ Limitations:
P No noise hits

b All generated tracks with p; > 1 GeV
b Attempted full tracking in large sectors (unrealistic)
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High p; Track Trigger

¥ Reduce tower dimensions
¥ Use realistic p; spectrum for pileup particles (peak ~ 250 MeV)
¥ Include “loopers” in the magnetic field and noise hits

¥ Include resolution effects for ~50 micron pixels

¥ Trigger particle with p; > 10 GeV embedded amongst low p;
pileup tracks
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High p; Trigger
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Trigger particle with p; > 10 GeV embedded amongst low p; pileup tracks .,



fraction of tracks
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Results of emulation in software

¥ Assume 5 pixel sensor layers spaced 5 cm apart, 5...25 cm radii

¥ Efficiency of finding high-p track in 200 pileup events > 99.9%

¥ Tracks found are robust, very small rate for wrongly-assigned hits
¥ Published in AVK, Scientific Reports !! , 18543 (2021)
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Next steps: study FPGA implementation
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FPGA Implementation

¥ Basic functional units needed are algebraic operations and sorting
circuits

¥ Studies conducted with VITIS HLS design environment from XILINX
P Converts C code to FPGA implementation
P Elementary integer additions execute in nanoseconds
P Integer comparisons execute in 2 nanoseconds

P Parallelized sorting algorithms for 10’s of integers may execute in 10-20
nanoseconds

¥ Coding in progress to build high-level algorithm using algebra and
sorting modules

P Attempting to estimate total count of look-up tables needed and total
latency

P Study of pipelining options in progress
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Summary

¥ A standalone track trigger based on silicon tracking detectors has
significant physics potential

D Metastable charged particles with proper lifetime in the few mm to tens of
cm range provide a motivated physics case

P Postulated in models of dark matter

¥ Studies of algorithm in progress
D Parallel processing architecture
P Search for locally smooth trajectories at each processing node
P Iterative procedure with information exchange between nodes
P Convergence towards globally smoothest trajectory

¥ |Initial results suggest high track-finding efficiency > 99%
¥ Feasibility of FPGA implementation being investigated
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