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Background

» Fast Machine Learning for Science Workshop was held 30 November - 3
December, hosted virtually by Southern Methodist University

- Website available here: https://indico.cern.ch/e/fml2020

- Workshop was interdisciplinary and attracted over 500 participants, talks on a
wide variety of scientific applications.

» Workshop also included a hands-on tutorial session, to get people started on
applications of fast machine learning.

« After the workshop, a community white paper has been prepared, and
was accepted to a special issue of Frontiers in Al

Shameless plug: Oct 3-6 in Dallas!
https://indico.cern.ch/e/fm|2022
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Vision

BOX 1 | Fast machine learning in science.

Within this review paper, we refer to the concept of Fast Machine Learning
in Science as the integration of ML into the experimental data processing
Infrastructure to enable and accelerate scientific discovery. Fusing powerful
ML techniques with experimental design decreases the “time to science”
and can range from embedding real-time feature extraction to be as close
as possible to the sensor all the way to large-scale ML acceleration across
distributed grid computing datacenters. The overarching theme is to lower
the barrier to advanced ML techniques and implementations to make
large strides In experimental capabilities across many seemingly different
scientific applications. Efficient solutions require collaboration between
domain experts, machine learning researchers, and computer architecture
designers.
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“Necessarily, such a broad scope of topics cannot be
comprehensive. For the scientific domains, we note
that the contributions are examples of how ML
methods are currently being or planned to be
deployed. We hope that giving a glimpse into
specific applications will inspire readers to find more
novel use-cases and potential overlaps. The
summaries of state-of-the- art techniques we provide
relate to rapidly developing fields and, as such, may
become out of date relatively quickly. The goal is to
give non-experts an overview and taxonomy of the
different techniques and a starting point for further
investigation. To be succinct, we rely heavily on
providing references to studies and other overviews
while describing most modern methods.”
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Sec 2: Domain Exemplars

- Large section on Large Hadron Collider because it is a technology

driver for this community:
« Event Reconstruction

- Event Simulation

« Heterogeneous Computing

. Real-Time Analysis at 40 MHz Example use cases are not

L q comprehensive, but representative

« Bringing ML to Detector Front-En (unique physics challenge)
A
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FIGURE 2 | High-level overview of the stages in a GNN-based tracking pipeline. Only a subset of the typical edge weights are shown for illustration purposes. (A)
Graph construction, (B) edge classification, and (C) track construction. 6




Exemplars of domain applications

- High-intensity Accelerators: Belle II, MuZ2e

- Materials Discovery: Materials Synthesis, Scanning Probe Microscopy

« Fermilab Accelerator Controls

« Neutrino/Dark Matter Experiments: e.g. DUNE, MINERVA, Direct Detection Dark
Matter

« Electron-lon Collider

« Gravitational Waves

- Health: Biomedical Engineering and Health Monitoring

» Cosmology

« Plasma Physics

» Wireless Networking and Edge Computing

Post publishing - new domains called out including neuroscience and x-ray spectroscopy



Sec 3: Areas of overlap - representations
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Areas of overlap - representations ~ “**

TABLE 1 | Types of data representations and their relevance for the scientific domains discussed in this paper; v v = Particularly important for domain, v'= Relevant for

domain.
Domain Spatial Point cloud Temporal Spatio- Multi/Hyper- Examples

Temporal spectral
LHC vV vV v v — Detector reconstruction
Belle-ll/Mu2e vV Va4 — — — Track reconstruction
Material Synthesis v — v vV vV High-speed plasma imaging
Accelerator Controls v — Va4 — - Beam sensors
Accelerator neutrino Va4 vV v v — Detector reconstruction
Direct detection DM vV vV v v — Energy signatures
EIC vV vV v v — Detector reconstruction
Gravitational Waves v — vV — — Laser inference patterns
Biomedical engineering vV - — vV - Cell and tissue images
Health Monitoring v — vV v v Physiological sensor data
Cosmology vV vV v v vV Lensing/radiation maps
Plasma Physics v — vV v — Detector actuator signals
Wireless networking — — vV — — Electromagnetic spectrum
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Areas of overlap - representations  ~==

TABLE 1 | Types of data representations and their relevance for the scientific domains discussed in this paper; v v = Particularly important for domain, v'= Relevant for

domain. |
Image credit: Josh /

Domain Spatial Point cloud Temporal Spatio- - 8

Tempor:

LHC vV vV v v

Belle-1l/Mu2e vV v v - —

Material Synthesis v - v vavs

Accelerator Controls v — Va4 —

Accelerator neutrino Va4 vV v v

Direct detection DM vV vV v v

EIC vV vV v v

Gravitational Waves v — Va4 -

Biomedical engineering vV - — vV

Health Monitoring v — vV v

Cosmology vV vV vavs v

Plasma Physics v - vV v

Wireless networking — — vV —
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Areas of overlaps - systems &%

FPGA filter stack |
~Us latency y

Pb/s Yy
40MHz ) /
10s Gb/s

On-detector Worldwide

ASIC compression computing grid

~100ns latency F xabyte-scale
datasets

On-prem CPU/GPU

filter farm
~100 ms latency

Custom embedded systems

Software-programmable coprocessors
10



Areas of overlaps - systems
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TABLE 2 | Domains and practical constraints: systems are broadly classified as soft (software-programmable computing devices: CPUs, GPUs, and TPUs) and custom
(custom embedded computing devices: FPGAs and ASICs).

Domain Event rate Latency Systems Energy-constrained
Detection and event reconstruction No

LHC and intensity frontier HEP 10s Mhz NS-MS Soft/custom

Nuclear physics 10s kHz ms Soft

Dark matter and neutrino physics 10s MHz 1S Soft/custom

Image processing

Material synthesis 10s kHz ms Soft/custom

Scanning probe microscopy kHz ms Soft/custom

Electron microscopy MHz uS Soft/custom

Biomedical engineering kHz ms Soft/custom Yes (mobile settings)
Cosmology Hz S Soft

Astrophysics kKHz—MHz MS-US Soft Yes (remote locations)
Signal processing

Gravitational waves KHZz ms Soft

Health monitoring kKHz ms Custom Yes

Communications kKHZz ms Soft Yes (mobile settings)
Control systems

Accelerator controls kHz MS—uS Soft/custom

Plasma physics kHz ms Soft

11



Areas of overlaps - feedback

TABLE 3 | Classification of domains and their system requirements with respect to real-time needs.

Domain

Real-time data reduction

Real-time analysis

Closed-loop control

Detection/Event reconstruction

LHC Yes Yes No
Nuclear physics Yes No No
Dark matter-neutrino Yes No No
Image processing

Material synthesis Yes Yes Yes
Scanning probe microscopy Yes

Electron microscopy Yes

Biomedical engineering Yes

Cosmology Yes No No
Astrophysics Yes No No
Signal processing

Gravitational waves Yes No No
Health monitoring Yes Yes Yes
Communications Yes Yes Yes
Control systems

Accelerator controls Yes Yes Yes
Plasma physics Yes Yes Yes

L
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Sect 4: Efficient ML

Snowmss 2021

e A discussion of strategies for improving ML efficiency to enable lower latency
» Designing new efficient ML architectures

- NN & hardware co-design

« Quantization

- Pruning and sparse inference

- Knowledge distillation
 Discussion of automation of the NN

architecture design process

(Neural Architecture Search).

« Not mentioned in WP but important!
e Fault-tolerant, reliable ML

/

Inference Latency

64° 6464 °
convl conv2/3

(0Bits ) (0Bits)

(8Bits ) (8Bits)

Balancethe ,
Trade-off

@ensitivity: Flat vs. Sharp Local Minima\




Section 4: Hardware Architecture

 Discussion of different computing architectures: CPU, GPU, FPGA/ASIC

» DPU: Deep learning processing unit, customized for CNNs. These can be
implemented on FPGAs or ASICs.

DPUs
CPUs GPUs
(ASICs or FPGA)
R - |
—> =] —> . —> — - I
| | | |
Scalar Vector-based SIMD Matrix- and Tensor- Spatial

pProcessors processors based processors pProcessors

14



Section 4: Hardware Architecture

 Discussion of different computing architectures: CPU, GPU, FPGA/ASIC

LN
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» DPU: Deep learning processing unit, customized for CNNs. These can be
implemented on FPGAs or ASICs.

CPUs

GPUs

DPUs
(ASICs or FPGA)

|
N -
[ I

Scalar
processors

Vector-based SIMD
processors

DRAM

DPU (MPE)

DMA
|

Input &
Activation
Buffering

Weight Buffer

Compute Array
Matrix or Tensor Processing

Activation Functions/Pooling...

DPU (Spatial)
__Dedicated Weight Buffers ..

)

[ | ] \ J [ : ] ( ) l ]

L Dédicéted/to'm'bg,téiArcH’i’tecture "

Activation Bufféring i
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Sec 4: codesign b

https://arxiv.org/abs/2207.07958

TensorFlow / TF Keras / PyTorch / ONNX

NN

AN — [ | | | | |
= N . HLS project: &) i
S 9 hIS 4 ml 9 X|l|nxVl\;::rc:t;irLétI:Ft)iluQ:E;tusHLS, e‘ FaStML SCIenCG
2 1010_ | —
‘WA © Sensor Data Compression
: §uEl - © — 1
o : o
. ‘mllmm g Jet Classification
-> Conifer => (=gt )
=
4V]
@
-
7))
[ ONNX] 106_

MLPerf Tiny (IC) ”

---------------------------------------------------------------

___________________________ Optimizations &

! B i Resource : i : :
. Frontend | -(I;zresr]:(t)i;rlr‘:;sgsnce) Estimation || | Backend 1 Customized hardware ; Beam Control
- Lo P 5 solution with runtime 5 l |

NeUral NG o {} ' 1| Synthesis using ; environment ; r 'l

S . HLS . iN] Vivado and Vitis |- - :
PD_Igscrrl‘;/aélon ol E> Sicamine j\> Conversion :> Folding :f\> for different ¥ 5@5 E 104} -
orch/Brevitas | ! P : | = G~ : .
d target devices | ! ! : MLPerf Mobile (NLP)

___________________________________________________________________________________________________________________________________________________

| |

IR IRCT 2 | 1 1 l
CTC C o= 107 10° 10° 107 100 100 10°

Multi-Level IR Compiler Framework Circuit IR Compilers and Tools Reference latency [s]

15



Beyond-CMOS Neuromorphic Hardware <=

» |n this section, the most prominent emerging technology proposals,
including those based on emerging dense analog memory device circuits,
are grouped according to the targeted low-level neuromorphic

functionality.
- Analog Vector-by-Matrix Multiplication @ 4 }
- Stochastic Vector-by-Matrix Multiplication @ e R kI
. Spiking Neuron and Synaptic Plasticity - j(;z if J’

« Reservoir Computing SN
: : : e @ ” | I,=>GV,
- Hyperdimensional Computing / Associative Memory - 2T

FIGURE 10 | Analog vector-by-matrix multiplication (VMM) in a crossbar
circuit with adjustable crosspoint devices. For clarity, the output signal is
shown for just one column of the array, while sense amplifier circuitry is not
shown. Note that other VMM designs, e.g., utilizing duration of applied voltage
pulses, rather than their amplitudes, for encoding inputs/outputs, are now
being actively explored see, e.g., their brief review in Bavandpour et al. (2018).

16



Connections L5

e CompF3: ML

» WP on “Physics Community Needs, T
Tools, and Resources for Machine i tacking A
Learning”, arXiv: 2203.16255 sosmerior a - A.Hardware\\

Ecosystem

. Related talk \C Y/ o
HEP Al task / ;Ps?é

« CompF4: Storage & Processing N o %
Simulation Benchmark . é————-’""

Real-time/near-sensor Tasks \

« Subsection on Al hardware B \
N N - J
° AI Hardwa e talk / Abstraction, Integration,

Software, Platform
Industry Al tasks (containers, cloud, HPC)

e IFO7: Electron iCS/ ASICS Computer Vision \ J

Natural Language Processing

. WP on “Smart sensors using artificial -

intelligence for on-detector electronics
and ASICs”, arXiv:2204.13223

17
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Parting thoughts

~

=

Promote interdisciplinary collaborations

physicists, computer scientists, electrical and computer engineers, software engineers

~

J

-

Custom embedded systems

J

-

Build open-source, multi-technology
codesign workflows

~

Off-the-shelf coprocessors

~

Be nimble: abstraction, portability,
containerization

Novel ML research concepts: efficient, fault-tolerant, reliable

Open data, task-based, and data-based benchmarks

Support ecosystem integration and operation

A8\
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here, our problems
surpass industry and
there are no OTS
solutions

Our problems can
inspire new
technologies and
techniques!

Parting thoughts

4 )
Promote interdisciplinary collaborations
physicists, computer scientists, electrical and computer engineers, software engineers
\_ J
(" N\ )
Custom embedded systems Off-the-shelf coprocessors
\_ J Y,
( ° ° \ ( ° ° oo \
Build open-source, multi-technology Be nimble: abstraction, portability,
codesign workflows containerization
\_ J L J
(" )
Novel ML research concepts: efficient, fault-tolerant, reliable
( )
Open data, task-based, and data-based benchmarks
Support ecosystem integration and operation
\_ W,

A8\
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Extremely valuable to
learn from non-domain
expertise; challenge is
to find common goals

We are at the whim of
industry! Adapt to new
technologies

Catalyze and
consolidate progress

Projectization makes
longevity and support
very hard, need
avenues for this

20



