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Background
• Fast Machine Learning for Science Workshop was held 30 November – 3 

December, hosted virtually by Southern Methodist University


• Website available here: https://indico.cern.ch/e/fml2020


• Workshop was interdisciplinary and attracted over 500 participants, talks on a 
wide variety of scientific applications.


• Workshop also included a hands-on tutorial session, to get people started on 
applications of fast machine learning.


• After the workshop, a community white paper has been prepared, and 
was accepted to a special issue of Frontiers in AI
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Shameless plug: Oct 3-6 in Dallas!   
https://indico.cern.ch/e/fml2022

https://indico.cern.ch/event/924283/
https://indico.cern.ch/event/924283/
https://indico.cern.ch/e/fml2022
https://indico.cern.ch/e/fml2022
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In this community review report, we discuss applications and techniques for fast

machine learning (ML) in science—the concept of integrating powerful ML methods

into the real-time experimental data processing loop to accelerate scientific discovery.

The material for the report builds on two workshops held by the Fast ML for

Science community and covers three main areas: applications for fast ML across a

number of scientific domains; techniques for training and implementing performant

and resource-efficient ML algorithms; and computing architectures, platforms, and

technologies for deploying these algorithms. We also present overlapping challenges

across the multiple scientific domains where common solutions can be found. This

community report is intended to give plenty of examples and inspiration for scientific

discovery through integrated and accelerated ML solutions. This is followed by a

high-level overview and organization of technical advances, including an abundance of

pointers to source material, which can enable these breakthroughs.

Keywords: machine learning for science, big data, particle physics, codesign, coprocessors, heterogeneous

computing, fast machine learning
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BOX 1 | Fast machine learning in science.

Within this review paper, we refer to the concept of Fast Machine Learning

in Science as the integration of ML into the experimental data processing

infrastructure to enable and accelerate scientific discovery. Fusing powerful

ML techniques with experimental design decreases the “time to science"

and can range from embedding real-time feature extraction to be as close

as possible to the sensor all the way to large-scale ML acceleration across

distributed grid computing datacenters. The overarching theme is to lower

the barrier to advanced ML techniques and implementations to make

large strides in experimental capabilities across many seemingly different

scientific applications. Efficient solutions require collaboration between

domain experts, machine learning researchers, and computer architecture

designers.

FIGURE 1 | The concept behind this review paper is to find the confluence of

domain-specific challenges, machine learning, and experiment and computer

system architectures to accelerate science discovery.

As ML tools have become more sophisticated, much of the
focus has turned to building very large algorithms that solve
complicated problems, such as language translation and voice
recognition. However, in the wake of these developments, a broad
range of scientific applications have emerged that can benefit
greatly from the rapid developments underway. Furthermore,
these applications have diversified as people have to come to
realize how to adapt their scientific approach so as to take
advantage of the benefits originating from the AI revolution. This
can include the capability of AI to classify events in real time,
such as the identification of a collision of particles or a merger of
gravitational waves. It can also include systems control, such as
the response control from feedback mechanisms in plasmas and
particle accelerators. The latency, bandwidth, and throughput
restrictions and the reasons for such restrictions differ within
each system. However, in all cases, accelerating ML is a driver in
the design goal.

The design of low latency algorithms differs from other
AI implementations in that we must tailor specific processing

hardware to the task at hand to increase the overall algorithm
performance. In particular, certain processor cores have been
configured for optimized sparse matrix multiplications. Others
have been optimized to maximize the total amount of
compute. Processor design, and the design of algorithms
around processors, often referred to as hardware ML co-design,
is the focus of the work in this review. For example, in
some cases, ultra-low latency inference times are needed to
perform scientific measurements. One must efficiently design the
algorithm to optimally utilize the hardware constraints available
while preserving the algorithm performance within desired
experimental requirements. This is the essence of hardware
ML co-design.

The contents of this review are laid out as follows. In the
Section 2, we will explore a broad range of scientific problems
where Fast ML can act as a disruptive technology to the status
quo and lead to a significant change in how we process data.
Domain experts from seemingly different domains are examined.
In Section 3, we describe data representations and experimental
platform choices are common to many types of experiments.
We will connect how Fast ML solutions can be generalized to
low latency, highly resource-efficient, and domain-specific deep
learning inference for many scientific applications. Finally in
Section 4, to achieve this requires optimized hardware ML co-
design from the algorithm design to the system architecture.
We provide an overview of state-of-the-art techniques to train
neural networks optimized for both performance and speed,
survey various compute architectures to meet the needs of the
experimental design and outline software solutions that optimize
and enable the hardware deployment.

The goal of this paper is to bring together scientific
opportunities, common solutions, and state-of-the-art
technology into one single narrative.We hope this can contribute
to accelerating the deployment of potentially transformative ML
solutions to a broad range of scientific fields going forward.

2. EXEMPLARS OF DOMAIN
APPLICATIONS

As scientific ecosystems grow rapidly in their speed and scale,
new paradigms for data processing and reduction need to be
integrated into system-level design. In this section, we explore
requirements for accelerated and sophisticated data processing.
Implementations of fast machine learning can appear greatly
varied across domains and architectures but yet can have
similar underlying data representations and needs for integrating
machine learning. We enumerate here a broad sampling of
scientific domains across seemingly unrelated tasks including
their existing techniques and future needs. This will then lead to
the next section where we discuss overlaps and common tasks.

We note here that this section has an emphasis on challenges
addressed with deep learning techniques being proposed to
address increasingly complex datasets in scientific applications,
while sometimes referring to other classic ML algorithms.
However, in all of these use-cases, there is understably a large
history of domain algorithms and other classic, “shallow”, ML

Frontiers in Big Data | www.frontiersin.org 3 April 2022 | Volume 5 | Article 787421
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“Necessarily, such a broad scope of topics cannot be 
comprehensive. For the scientific domains, we note 
that the contributions are examples of how ML 
methods are currently being or planned to be 
deployed. We hope that giving a glimpse into 
specific applications will inspire readers to find more 
novel use-cases and potential overlaps. The 
summaries of state-of-the- art techniques we provide 
relate to rapidly developing fields and, as such, may 
become out of date relatively quickly. The goal is to 
give non-experts an overview and taxonomy of the 
different techniques and a starting point for further 
investigation. To be succinct, we rely heavily on 
providing references to studies and other overviews 
while describing most modern methods.” 
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As ML tools have become more sophisticated, much of the
focus has turned to building very large algorithms that solve
complicated problems, such as language translation and voice
recognition. However, in the wake of these developments, a broad
range of scientific applications have emerged that can benefit
greatly from the rapid developments underway. Furthermore,
these applications have diversified as people have to come to
realize how to adapt their scientific approach so as to take
advantage of the benefits originating from the AI revolution. This
can include the capability of AI to classify events in real time,
such as the identification of a collision of particles or a merger of
gravitational waves. It can also include systems control, such as
the response control from feedback mechanisms in plasmas and
particle accelerators. The latency, bandwidth, and throughput
restrictions and the reasons for such restrictions differ within
each system. However, in all cases, accelerating ML is a driver in
the design goal.

The design of low latency algorithms differs from other
AI implementations in that we must tailor specific processing

hardware to the task at hand to increase the overall algorithm
performance. In particular, certain processor cores have been
configured for optimized sparse matrix multiplications. Others
have been optimized to maximize the total amount of
compute. Processor design, and the design of algorithms
around processors, often referred to as hardware ML co-design,
is the focus of the work in this review. For example, in
some cases, ultra-low latency inference times are needed to
perform scientific measurements. One must efficiently design the
algorithm to optimally utilize the hardware constraints available
while preserving the algorithm performance within desired
experimental requirements. This is the essence of hardware
ML co-design.

The contents of this review are laid out as follows. In the
Section 2, we will explore a broad range of scientific problems
where Fast ML can act as a disruptive technology to the status
quo and lead to a significant change in how we process data.
Domain experts from seemingly different domains are examined.
In Section 3, we describe data representations and experimental
platform choices are common to many types of experiments.
We will connect how Fast ML solutions can be generalized to
low latency, highly resource-efficient, and domain-specific deep
learning inference for many scientific applications. Finally in
Section 4, to achieve this requires optimized hardware ML co-
design from the algorithm design to the system architecture.
We provide an overview of state-of-the-art techniques to train
neural networks optimized for both performance and speed,
survey various compute architectures to meet the needs of the
experimental design and outline software solutions that optimize
and enable the hardware deployment.

The goal of this paper is to bring together scientific
opportunities, common solutions, and state-of-the-art
technology into one single narrative.We hope this can contribute
to accelerating the deployment of potentially transformative ML
solutions to a broad range of scientific fields going forward.

2. EXEMPLARS OF DOMAIN
APPLICATIONS

As scientific ecosystems grow rapidly in their speed and scale,
new paradigms for data processing and reduction need to be
integrated into system-level design. In this section, we explore
requirements for accelerated and sophisticated data processing.
Implementations of fast machine learning can appear greatly
varied across domains and architectures but yet can have
similar underlying data representations and needs for integrating
machine learning. We enumerate here a broad sampling of
scientific domains across seemingly unrelated tasks including
their existing techniques and future needs. This will then lead to
the next section where we discuss overlaps and common tasks.

We note here that this section has an emphasis on challenges
addressed with deep learning techniques being proposed to
address increasingly complex datasets in scientific applications,
while sometimes referring to other classic ML algorithms.
However, in all of these use-cases, there is understably a large
history of domain algorithms and other classic, “shallow”, ML
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Sec 2: Domain Exemplars
• Large section on Large Hadron Collider because it is a technology 

driver for this community:

• Event Reconstruction

• Event Simulation

• Heterogeneous Computing

• Real-Time Analysis at 40 MHz

• Bringing ML to Detector Front-End
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FIGURE 2 | High-level overview of the stages in a GNN-based tracking pipeline. Only a subset of the typical edge weights are shown for illustration purposes. (A)

Graph construction, (B) edge classification, and (C) track construction.

data processing workflow of LHC experiments. These works
demonstrated that the acceleration of machine learning inference
“as a service” represents a heterogeneous computing solution for
LHC experiments that potentially requires minimal modification
to the current computing model.

In this approach, the ML algorithms are transferred to a
co-processor on an independent (local or remote) server by
reconfiguring the CPU node to communicate with it through
asynchronous and non-blocking inference requests. With the
inference task offloaded on demand to the server, the CPU can
be dedicated to performing other necessary tasks within the
event. As one server can serve many CPUs, this approach has
the advantage of increasing the hardware cost-effectiveness to
achieve the same throughput when comparing it to a direct-
connection paradigm. It also facilitates the integration and
scalability of different types of co-processor devices, where the
best one is chosen for each task.

Finally, existing open-source frameworks that have been
optimized for fast DL on several different types of hardware
can be exploited for a quick adaptation to LHC computing.
In particular, one could use the Nvidia Triton Inference Server
within a custom framework, so-called Services for Optimized
Network Inference on Co-processors (SONIC), to enable remote
gRPC calls to either GPUs or FPGAs within the experimental
software, which then only has to handle the input and output
conversion between event data format and inference server
format. The integration of this approach within the CMS
reconstruction software has been shown to lead to a significant
overall reduction in the computing demands both at the HLT
and offline.

2.1.4. Real-Time Analysis at 40 MHz
Bringing deep learning algorithms to the Level-1 hardware
trigger is an extremely challenging task due to the strict
latency requirement and the resource constraints imposed by the
system. Depending on which part of the system an algorithm
is designed to run on, a latency down to O(10) ns might
be required. With O(100) processors running large-capacity
FPGAs, processing thousands of algorithms in parallel, dedicated
FPGA-implementations are needed to make ML algorithms as

resource-efficient and fast as possible. To facilitate the design
process and subsequent deployment of highly parallel, highly
compressed ML algorithms on FPGAs, dedicated open-source
libraries have been developed: hls4ml and Conifer. The
former, hls4ml, provides conversion tools for deep neural
networks, while Conifer aids the deployment of Boosted
Decision Trees (BDTs) on FPGAs. Both libraries, as well as
example LHC applications, will be described in the following.

The hls4ml library (Duarte et al., 2018; Coelho et al., 2020;
Loncar et al., 2020; Aarrestad et al., 2021) converts pre-trained
ML models into ultra low-latency FPGA or ASIC firmware with
little overhead required. Integration with the Google QKeras
library (Coelho, 2019) allows users to design aggressively
quantized deep neural networks and train them quantization-
aware (Coelho et al., 2020) down to 1 or 2 bits for weights
and activations (Loncar et al., 2020). This step results in highly
resource-efficient equivalents of the original model, sacrificing
little to no accuracy in the process. The goal of this joint package
is to provide a simple two-step approach going from a pre-
trained floating point model to FPGA firmware. The hls4ml
library currently provides support for several commonly used
neural network layers like fully connected, convolutional, batch
normalization, pooling, as well as several activation functions.
These implementations are already sufficient to provide support
for the most common architectures envisioned for deployment
at L1.

Some first examples of machine learning models designed
for the L1 trigger are based on fully connected layers, and
they are proposed for tasks such as the reconstruction and
calibration of final objects or lower-level inputs like trajectories,
vertices, and calorimeter clusters (CERN, 2020). One example
of a convolutional NN (CNN) architecture targeting the L1
trigger is a dedicated algorithm for the identification of long-
lived particles (Alimena et al., 2020). Here, an attempt is made
to efficiently identify showers from displaced particles in a high-
granularity forward calorimeter. The algorithm is demonstrated
to be highly efficient down to low energies while operating at
a low trigger rate. Traditionally, cut-based selection algorithms
have been used for these purposes, in order to meet the limited
latency- and resource budget. However, with the advent of

Frontiers in Big Data | www.frontiersin.org 6 April 2022 | Volume 5 | Article 787421
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comprehensive, but representative
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Exemplars of domain applications
• High-intensity Accelerators: Belle II, Mu2e

• Materials Discovery: Materials Synthesis, Scanning Probe Microscopy

• Fermilab Accelerator Controls

• Neutrino/Dark Matter Experiments: e.g. DUNE, MINERvA, Direct Detection Dark 

Matter

• Electron-Ion Collider

• Gravitational Waves

• Health: Biomedical Engineering and Health Monitoring

• Cosmology

• Plasma Physics

• Wireless Networking and Edge Computing
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understanding distinctions and commonalities among domains
and applications. Thereby, we can coordinate efforts toward
creating fundamental design principles and tools, which may
address needs across seemingly disparate domains. Appropriate
data representation is an essential first step of the design process
as it determines the choice of NN architecture to be implemented
in real-time systems that need to meet the performance targets
outlined above. Prominent data representations of different
scientific instruments are summarized below. Other areas of
overlap across domains such as NN and hardware co-design
tools and workflows, NN complexity reduction with quantization
and pruning are also recent technology advancements in real-
time/accelerated AI and therefore are outlined in Section 4.

3.1. Data Representations
Data representation used in a particular domain influences
both the computation system and data storage. One global
classification for data representations across domains can be
considered as being into raw vs. reconstructed data. The data
representation often varies depending on the stage of the
reconstruction and the upstream steps in the data processing
pipeline. Existing applications include fully connected NNs that
often take pre-processed expert feature variables as inputs or
CNNs when the data is of image nature. On-going development
of domain knowledge-inspired NN algorithms could further take
advantage of the expert features in the accuracy and efficiency as
detailed below. To fully exploit the power of advanced NNs and
bring it closer to data creation for minimum information loss, a
more suitable representation of the raw data, e.g., as point clouds,
needs to be employed. Prominent representations for raw data
from different experimental and measurement systems are:

• Spatial Data: Used for describing physical objects in geometric
space. There are two main types, called vector and raster data.
Vector data, in turn, can be comprised of points, lines, or
polygons. Raster data refers to a grid of pixels, such as images,
but pixels can also represent other measurements such as
intensity, charge, field strength, etc.

• Point Clouds: Can be considered a type of spatial data. This
data representation is created by collating a set of spatial data,
i.e., points in a 3D space, that usually form an object in space
collectively.

• Temporal Data: Used to represent the state of a
system/experiment at a particular time. Data collected
across time, in a specific order, is classified in this manner.
Time-series data is a subset of this representation, where data
is sampled at regular time intervals. An example of time-series
data can be seen in Figure 3, for the specific case of supernova
classification.

• Spatio-Temporal Data: Measurements and observations of
a system can be collected across both the space and time
dimensions. In that case, the data can be considered spatio-
temporal.

• Multispectral Data: Used to represent outputs of multiple
sensors that capture measurements from multiple bands of
the electromagnetic spectrum. Multispectral representation is
commonly used in the context of imaging, involving sensors

FIGURE 3 | Simulated type Ia supernova light-curve and classification. Top:

calibrated flux evolution in different DES band-passes as a function of

normalized time (the first photometric measurement is set to time equals zero).

Bottom: Baseline RNN classification probability evolution with respect of time,

no host-galaxy redshift information was provided. At each photometric

measurement, classification probability is obtained. The maximum light of the

simulated supernova is shown in a gray dashed line and the simulated redshift

of the supernovae is shown on the top z = 0.466. We highlight that redshift is

not used for this classification but can improve results. Our baseline RNN

classifies this light-curve as type Ia SN with great accuracy before maximum

light, it only requires a handful of photometric epochs. (Möller and

de Boissiére, 2019).

that are sensitive to different wavelengths of light. This usually
involves in the order of a few to 10s of spectra.

• Hyperspectral Data: Used to represent measurements from
a high number of spectra, e.g., in the order of 100s. These
images collected from different narrow-band spectra are
combined into a so-called hyperspectral cube with three main
dimensions. The first two reference the 2D spatial placement
(e.g., earth’s surface) while the third dimension represents the
complete spectrum content at each “pixel” location.

In Table 1, we match these data representations to scientific
application domains and give a brief description. We highlight
the data representations which are particularly important for a
specific domain. We will give more detailed examples below.

Cost of data communication (in terms of latency) and
data storage (in terms of the cost of acquiring and managing
the physical storage resources) present important challenges.
Particularly, application domains, which require real-time
analysis and/or real-time feedback demand highly optimized data
analytics solutions. Applications that rely on hyper-spectral data
are faced with an ever-increasing rate of data input across the
electromagnetic spectrum. High-speed data reduction is required
in these domains. Applications that generate large-scale point
clouds similarly demand efficient compression on their spatial
data. Application domains that handle multi-spectral data with
limited spatial resolution require ultra-fast reconstruction in
order to enable real-time control feedback. Another challenge is

Frontiers in Big Data | www.frontiersin.org 18 April 2022 | Volume 5 | Article 787421
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FIGURE 2 | High-level overview of the stages in a GNN-based tracking pipeline. Only a subset of the typical edge weights are shown for illustration purposes. (A)

Graph construction, (B) edge classification, and (C) track construction.

data processing workflow of LHC experiments. These works
demonstrated that the acceleration of machine learning inference
“as a service” represents a heterogeneous computing solution for
LHC experiments that potentially requires minimal modification
to the current computing model.

In this approach, the ML algorithms are transferred to a
co-processor on an independent (local or remote) server by
reconfiguring the CPU node to communicate with it through
asynchronous and non-blocking inference requests. With the
inference task offloaded on demand to the server, the CPU can
be dedicated to performing other necessary tasks within the
event. As one server can serve many CPUs, this approach has
the advantage of increasing the hardware cost-effectiveness to
achieve the same throughput when comparing it to a direct-
connection paradigm. It also facilitates the integration and
scalability of different types of co-processor devices, where the
best one is chosen for each task.

Finally, existing open-source frameworks that have been
optimized for fast DL on several different types of hardware
can be exploited for a quick adaptation to LHC computing.
In particular, one could use the Nvidia Triton Inference Server
within a custom framework, so-called Services for Optimized
Network Inference on Co-processors (SONIC), to enable remote
gRPC calls to either GPUs or FPGAs within the experimental
software, which then only has to handle the input and output
conversion between event data format and inference server
format. The integration of this approach within the CMS
reconstruction software has been shown to lead to a significant
overall reduction in the computing demands both at the HLT
and offline.

2.1.4. Real-Time Analysis at 40 MHz
Bringing deep learning algorithms to the Level-1 hardware
trigger is an extremely challenging task due to the strict
latency requirement and the resource constraints imposed by the
system. Depending on which part of the system an algorithm
is designed to run on, a latency down to O(10) ns might
be required. With O(100) processors running large-capacity
FPGAs, processing thousands of algorithms in parallel, dedicated
FPGA-implementations are needed to make ML algorithms as

resource-efficient and fast as possible. To facilitate the design
process and subsequent deployment of highly parallel, highly
compressed ML algorithms on FPGAs, dedicated open-source
libraries have been developed: hls4ml and Conifer. The
former, hls4ml, provides conversion tools for deep neural
networks, while Conifer aids the deployment of Boosted
Decision Trees (BDTs) on FPGAs. Both libraries, as well as
example LHC applications, will be described in the following.

The hls4ml library (Duarte et al., 2018; Coelho et al., 2020;
Loncar et al., 2020; Aarrestad et al., 2021) converts pre-trained
ML models into ultra low-latency FPGA or ASIC firmware with
little overhead required. Integration with the Google QKeras
library (Coelho, 2019) allows users to design aggressively
quantized deep neural networks and train them quantization-
aware (Coelho et al., 2020) down to 1 or 2 bits for weights
and activations (Loncar et al., 2020). This step results in highly
resource-efficient equivalents of the original model, sacrificing
little to no accuracy in the process. The goal of this joint package
is to provide a simple two-step approach going from a pre-
trained floating point model to FPGA firmware. The hls4ml
library currently provides support for several commonly used
neural network layers like fully connected, convolutional, batch
normalization, pooling, as well as several activation functions.
These implementations are already sufficient to provide support
for the most common architectures envisioned for deployment
at L1.

Some first examples of machine learning models designed
for the L1 trigger are based on fully connected layers, and
they are proposed for tasks such as the reconstruction and
calibration of final objects or lower-level inputs like trajectories,
vertices, and calorimeter clusters (CERN, 2020). One example
of a convolutional NN (CNN) architecture targeting the L1
trigger is a dedicated algorithm for the identification of long-
lived particles (Alimena et al., 2020). Here, an attempt is made
to efficiently identify showers from displaced particles in a high-
granularity forward calorimeter. The algorithm is demonstrated
to be highly efficient down to low energies while operating at
a low trigger rate. Traditionally, cut-based selection algorithms
have been used for these purposes, in order to meet the limited
latency- and resource budget. However, with the advent of
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FIGURE 4 | A 6GeV/c electron event in the ProtoDUNE detector. The x-axis shows the wire number. The y-axis shows the time tick in the unit of 0.5µs. The color

scale represents the charge deposition.

knowledge to add training data or to change the loss function
(Vo et al., 2017). Model interpretability in DNNs has seen an
upsurge in research over the past years (Chakraborty et al., 2017).
Commonly, studies look at individual units and their activation
patterns to elucidate what is learned across layers of neurons.

3.1.2. Frame-Based Images
Frame-based images are a suitable representation of the
experimental data in multiple domains such as neutrino
detection with time projection chambers in particle physics. An
example of this data representation can be seen in Figure 4 for
an electron deposition in the ProtoDUNE neutrino detector. A
spatial frame is shown by plotting the time coordinate “Tick”
and wire position in space. Recent developments in neural
network architectures exploit the sparsity of the images to
reduce the computation complexity for real-time/accelerated ML
applications. Other types of experimental data in HEP and many
other domains can also be processed to be represented as frame-
based images, although often not without information loss.

3.1.3. Point Clouds
Point cloud data representation is often used in HEP, where
multiple frames of event-based measurements collected by a
large number of detectors are combined into a data set. Across
manyHEP applications point clouds commonly help to represent
particle jets with data sizes exceeding Pb/s. More broadly,
point clouds can be used to capture any 3D space event and
interactions of moving parts in space. For CMS, remnants of
proton-proton collisions create sensors signals in a customized
and optimized detector geometry and points are illustrated
in space. Various types of scan-based imaging data can be
represented as point clouds. Other domains such as CT and
PET scanning in biomedical engineering and virtual reality
also utilize this representation for imaging. 3D scanners used
for product design, solid object modeling, architecture, and
infrastructure design leverage point clouds as well. Many of these

imaging tasks generate point clouds of sizes in the order of
several GB to TB. Domains sharing point cloud representation
(e.g., HEP and biomedical imaging) also commonly involve
spatial characteristics.

3.1.4. Multi-/Hyperspectral Data
Multispectral data is common between wireless health
monitoring and wireless communication systems. A set of
physiological sensors, often representing different modalities,
are combined into a multispectral data set for health monitoring
and intervention systems. For wireless communication, signal
interference and network traffic conditions are captured via
multispectral data. Both domains capture this data across the
time domain, so also exhibit temporal features. Furthermore, in
both domains generated data size can be considered relatively
smaller (ranging from 100s of Mb/s to 10s of Gb/s), compared
to the rest of the domains discussed in this article. Hyperspectral
data is used across many astronomy applications, medical
imaging, and electron microscopy, which is used to drive
many materials science design and discovery applications.
An example of hyperspectral data in electron microscopy
is shown in Figure 5. An electron probe is rastered over a
sample under study and diffraction patterns are captured on
a pixelated detector. The pixelated detector captures many
images as the electron probe is scanned across the sample.
Emerging multimessenger astronomy applications further
emphasize the utility of hyperspectral data representations
combining observations from a wide array of detectors and
telescopes.

3.1.5. Time-Series Data
Time-series data is common in experiments that observe
dynamically evolving systems in processes such as synthesis for
material discoveries or the temporal evolution of the plasma state
in nuclear fusion experiments. It can be a measurement of high-
speed temporally resolved imaging in material science or physics
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FIGURE 5 | Experimental 4D-STEM measurement of a dichalcogenide 2D

material. Atomic map is inferred from the data, each diffraction pattern

represents an average of 7× 7 experimental images, green STEM probes are

labeled for regions of the sample with one layer, vacuum, and two layers

(Ophus, 2019).

features (density, temperature, current, radiation, fluctuations,
etc.) or spatial features of evolving plasma state, as a function
of time. In-situ diagnostics of the time-series data can either
provide alerts to terminate an experiment early that indicates
undesired outcome in material science without performing the
entire experiment and offline analysis that is time-consuming
and computationally expensive, thus improves the experiment
operation efficiency and accelerates discoveries of material of
desired properties. In the accelerator controls at the Fermilab
Booster accelerator, for example, magnet voltages that steer
proton beams around a synchrotron are recorded at 15Hz time
samples. This study builds a digital twin which is used to simulate
the Booster data. Furthermore, to reliably predict and avoid large-
scale major disruptions in nuclear fusion experiments, real-time
analysis of the time-series data is crucial in guiding the action
needed in experimental prediction and control.

3.2. System Constraints
In this section, we present an overview of desired system
properties and constraints that are prevalent across a number
of application domains. Unique challenges are arising from
each scientific application based on sensing technology, the
physical processes, and the timescales and data rates, and
bandwidth. These system constraints result in specific choices
of data processing platforms, often with multiple compute
architectures across the data continuum, such as the choice of
FPGA-based systems vs. embedded processors, GPUs, or custom
ASICs.Table 2 summarizes several scientific application domains
along with their event rates, system latency constraints and
performance requirements, and deployment characteristics. We
broadly define platforms for integration fast machine learning
techniques into “soft,” software programmable coprocessors,

and “custom,” custom embedded computing devices. Software-
programmable systems are often preferred because they are less
complex to implement while custom embedded solutions are
required when software programmable systems cannot satisfy
experimental throughput, bandwidth, or latency constraints.
We will describe in further detail this distinction below.
Examples of these system design choices are the trigger
systems for HEP include LHC reconstruction of collision events,
the Belle-II experiment, the Mu2e experiment which deploy
custom embedded systems. Meanwhile, experiments like the
Electron-Ion Collider have data rates that may not require
custom hardware solutions and could deploy only software
programmable solutions for event reconstruction and real-time
processing experiments. One final distinction worth discussing
concerns the nature of real-time processing and the in-situ
vs. post-mortem nature of the inference and analysis tasks.
Examples that we consider in classifying tasks that have
different requirements are: data reduction which primarily
focuses on limiting data collection rates of experiments for
offline analysis; real-time processing and data analysis which is
required to extract real-time domain features of the data for
tasks like filtering/triggering; and closed-loop controls where
data processing provides direct feedback to the operation and
continuous control of an experiment. These distinctions and
their consequences on the computing systems is illustrated in
Table 3.

3.2.1. Software Programmable Coprocessors
Historically, the first attempts at addressing the computational
needs of the problems reviewed in this article have been through
software-programmable systems. CPU-based local clusters or
cloud services as well as cloud computing resources utilizing
GPU or TPU-based hardware accelerators are utilized in
different applications. One particular concept explored by the
HEP community is the GPU as a Service (GPUaaS) model
(Krupa et al., 2020). This can further be expanded into the
Machine Learning as a Service concept, similarly explored within
HEP (Kuznetsov et al., 2020). These paradigms involve the
implementation of machine learning modules to solve a set of
physics problems, which are then transferred to GPU or TPU
accelerators and accessed by the local CPU “client” of the native
experimental system.

One of the major system constraints is the computational
capacity, which can be defined in terms of a number of floating
point operations as far as neural network implementations
are concerned. Real-time machine learning methods require
an ever-increasing rate of computational capacity as it directly
impacts the latency per task. The task could be a trigger for
LHC, reconstruction of an event in accelerator experiments
or astrophysics, material synthesis, reconstruction of an image
captured by an electron microscope, etc. Extreme parallelism
would be desired to provide the highest capacity possible to
minimize latency and maximize throughput. In a processor-
based system, this can be addressed by increasing the size of
the compute cluster. Naturally, facility costs impose a limit on
the scale of these clusters. Another constraint is the available
amount of storage coupled with the cost of data movement across
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TABLE 1 | Types of data representations and their relevance for the scientific domains discussed in this paper; !!= Particularly important for domain, != Relevant for

domain.

Domain Spatial Point cloud Temporal Spatio- Multi/Hyper- Examples

Temporal spectral

LHC !! !! ! ! – Detector reconstruction

Belle-II/Mu2e !! !! – – – Track reconstruction

Material Synthesis ! – ! !! !! High-speed plasma imaging

Accelerator Controls ! – !! – – Beam sensors

Accelerator neutrino !! !! ! ! – Detector reconstruction

Direct detection DM !! !! ! ! – Energy signatures

EIC !! !! ! ! – Detector reconstruction

Gravitational Waves ! – !! – – Laser inference patterns

Biomedical engineering !! – – !! – Cell and tissue images

Health Monitoring ! – !! ! ! Physiological sensor data

Cosmology !! !! !! ! !! Lensing/radiation maps

Plasma Physics ! – !! ! – Detector actuator signals

Wireless networking – – !! – – Electromagnetic spectrum

posed by applications that rely on accurate analysis of streaming
time-series data, yet they are forced to perform under highly
limited storage and communication resources, either due to
privacy and security concerns or limitations of the associated
edge devices.

Some current efforts in developing ML solutions to data
processing front-ends focus on developing autoencoder based
compression engines (Herwig et al., 2020; Loncar et al., 2020).
ML-based dimensionality reduction for hyper-spectral data is
another direction which has drawn attention (Agar et al., 2019).
Deep learning-based approaches are investigated for image
reconstruction; the field of material sciences being one of the
most active fields in that regards (Schmidt et al., 2019).

3.1.1. Expert Feature DNNs
One straightforward approach to building powerful domain-
specific ML algorithms is to start with expert domain features
and combine them in a neural network or other multivariate
analysis technique. This embedded expertise has inherent
advantages because the input features are interpretable, and
correlations between features can yield insight into a particular
task while optimizing performance. Furthermore, depending
on the computational complexity of the domain features, the
computation efficiency of such a machine learning approach can
be greater than the direct use of raw features. However, the
downside is that, by using expert features, we rely entirely on the
informativeness of such new features.

Therefore, there is a lot of interest in automating the process
of building informative new features from raw features. In image
classification tasks, for example, a lot of progress has been made
in extracting high-level data representations through deep neural
networks DNNs (Goodfellow et al., 2016). In DNNs, layers of
neurons above the original input signal are built to ensure
that each new layer captures a more abstract representation
of the data. Each layer constructs new features by forming
nonlinear combinations of the features in the layer below. This

hierarchical approach to feature construction has been effective
in disentangling factors of variation in the data (Hinton and
Salakhutdinov, 2006; Bengio et al., 2013; Goodfellow et al., 2016),
and has been useful to construct informative and meaningful
representations. In astronomical images, for example, a DNN
starts with low-level pixel information, gradually capturing
at upper layers edges, motifs, and eventually entire objects
(e.g., galaxies) to provide a broad view of the Universe
(Dominguez Sanchez et al., 2018; Huertas-Company et al., 2018).
The same applies to other fields of science. For example, detecting
particles in large accelerators requires transforming low-level
signals into dynamic patterns that can be ascribed to specific
particles (Belayneh et al., 2020). In medical imaging, there
is a need to quickly identify abnormal tissue from low-level
pixel information by gradually capturing global tissue patterns
(Bychkov et al., 2018). The importance of transforming the initial
input data into meaningful abstract representations cannot be
overstated: it remains one of the most powerful properties of
modern neural network architectures.

Several challenges exist in the construction of increasingly
abstract representations using DNNs. One challenge is to
incorporate domain knowledge (e.g., physical constraints) into
the neural network model. This is important to address the
need for excessive amounts of data when training a DNN and
narrow the gap in representational bias between the model
and target concept. Under scarce data but abundant domain
expertise, adding domain knowledge can expedite the training
process (Xie et al., 2021), as well as improving the model
generalization performance. Another challenge is to develop
tools for model interpretability by explaining the semantics of
the representations embedded at each layer (Chakraborty et al.,
2017). This is challenging due to the distributed representation
of information in the network architecture.

Despite the lack of a formal mechanism to attain a seamless
integration between a statistical model and domain knowledge,
current approaches point to interesting directions, e.g., using
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posed by applications that rely on accurate analysis of streaming
time-series data, yet they are forced to perform under highly
limited storage and communication resources, either due to
privacy and security concerns or limitations of the associated
edge devices.

Some current efforts in developing ML solutions to data
processing front-ends focus on developing autoencoder based
compression engines (Herwig et al., 2020; Loncar et al., 2020).
ML-based dimensionality reduction for hyper-spectral data is
another direction which has drawn attention (Agar et al., 2019).
Deep learning-based approaches are investigated for image
reconstruction; the field of material sciences being one of the
most active fields in that regards (Schmidt et al., 2019).

3.1.1. Expert Feature DNNs
One straightforward approach to building powerful domain-
specific ML algorithms is to start with expert domain features
and combine them in a neural network or other multivariate
analysis technique. This embedded expertise has inherent
advantages because the input features are interpretable, and
correlations between features can yield insight into a particular
task while optimizing performance. Furthermore, depending
on the computational complexity of the domain features, the
computation efficiency of such a machine learning approach can
be greater than the direct use of raw features. However, the
downside is that, by using expert features, we rely entirely on the
informativeness of such new features.

Therefore, there is a lot of interest in automating the process
of building informative new features from raw features. In image
classification tasks, for example, a lot of progress has been made
in extracting high-level data representations through deep neural
networks DNNs (Goodfellow et al., 2016). In DNNs, layers of
neurons above the original input signal are built to ensure
that each new layer captures a more abstract representation
of the data. Each layer constructs new features by forming
nonlinear combinations of the features in the layer below. This

hierarchical approach to feature construction has been effective
in disentangling factors of variation in the data (Hinton and
Salakhutdinov, 2006; Bengio et al., 2013; Goodfellow et al., 2016),
and has been useful to construct informative and meaningful
representations. In astronomical images, for example, a DNN
starts with low-level pixel information, gradually capturing
at upper layers edges, motifs, and eventually entire objects
(e.g., galaxies) to provide a broad view of the Universe
(Dominguez Sanchez et al., 2018; Huertas-Company et al., 2018).
The same applies to other fields of science. For example, detecting
particles in large accelerators requires transforming low-level
signals into dynamic patterns that can be ascribed to specific
particles (Belayneh et al., 2020). In medical imaging, there
is a need to quickly identify abnormal tissue from low-level
pixel information by gradually capturing global tissue patterns
(Bychkov et al., 2018). The importance of transforming the initial
input data into meaningful abstract representations cannot be
overstated: it remains one of the most powerful properties of
modern neural network architectures.

Several challenges exist in the construction of increasingly
abstract representations using DNNs. One challenge is to
incorporate domain knowledge (e.g., physical constraints) into
the neural network model. This is important to address the
need for excessive amounts of data when training a DNN and
narrow the gap in representational bias between the model
and target concept. Under scarce data but abundant domain
expertise, adding domain knowledge can expedite the training
process (Xie et al., 2021), as well as improving the model
generalization performance. Another challenge is to develop
tools for model interpretability by explaining the semantics of
the representations embedded at each layer (Chakraborty et al.,
2017). This is challenging due to the distributed representation
of information in the network architecture.

Despite the lack of a formal mechanism to attain a seamless
integration between a statistical model and domain knowledge,
current approaches point to interesting directions, e.g., using
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TABLE 2 | Domains and practical constraints: systems are broadly classified as soft (software-programmable computing devices: CPUs, GPUs, and TPUs) and custom

(custom embedded computing devices: FPGAs and ASICs).

Domain Event rate Latency Systems Energy-constrained

Detection and event reconstruction No

LHC and intensity frontier HEP 10s Mhz ns-ms Soft/custom

Nuclear physics 10s kHz ms Soft

Dark matter and neutrino physics 10s MHz µs Soft/custom

Image processing

Material synthesis 10s kHz ms Soft/custom

Scanning probe microscopy kHz ms Soft/custom

Electron microscopy MHz µs Soft/custom

Biomedical engineering kHz ms Soft/custom Yes (mobile settings)

Cosmology Hz s Soft

Astrophysics kHz–MHz ms-us Soft Yes (remote locations)

Signal processing

Gravitational waves kHz ms Soft

Health monitoring kHz ms Custom Yes

Communications kHz ms Soft Yes (mobile settings)

Control systems

Accelerator controls kHz ms–µs Soft/custom

Plasma physics kHz ms Soft

TABLE 3 | Classification of domains and their system requirements with respect to real-time needs.

Domain Real-time data reduction Real-time analysis Closed-loop control

Detection/Event reconstruction

LHC Yes Yes No

Nuclear physics Yes No No

Dark matter-neutrino Yes No No

Image processing

Material synthesis Yes Yes Yes

Scanning probe microscopy Yes

Electron microscopy Yes

Biomedical engineering Yes

Cosmology Yes No No

Astrophysics Yes No No

Signal processing

Gravitational waves Yes No No

Health monitoring Yes Yes Yes

Communications Yes Yes Yes

Control systems

Accelerator controls Yes Yes Yes

Plasma physics Yes Yes Yes

the memory hierarchy. In the majority of the use cases, the
latency involved with moving data from the front-end (detectors,
microscopes, sensors, etc.) dominates the total latency. One of the
prominent performance constraints is related to the utilization
and subsequent latency of the network that links the front-end
with the back-end. Current limitations on the speed of data
movement renders the CPU/GPU cluster-based systems unable
to meet the real-time requirements.

3.2.2. Custom Embedded Computing Devices
As the latency and throughput constraints are coupled with
challenging practical energy constraints, efforts have been
directed toward specialized computing systems to address the
hard real-time needs. An increasingly attractive paradigm is to
design components that are finely optimized for specific steps in
the data capture workflow. These components can be mapped
onto FPGA devices or they can be designed and manufactured
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TABLE 2 | Domains and practical constraints: systems are broadly classified as soft (software-programmable computing devices: CPUs, GPUs, and TPUs) and custom

(custom embedded computing devices: FPGAs and ASICs).

Domain Event rate Latency Systems Energy-constrained

Detection and event reconstruction No

LHC and intensity frontier HEP 10s Mhz ns-ms Soft/custom

Nuclear physics 10s kHz ms Soft

Dark matter and neutrino physics 10s MHz µs Soft/custom

Image processing

Material synthesis 10s kHz ms Soft/custom

Scanning probe microscopy kHz ms Soft/custom

Electron microscopy MHz µs Soft/custom

Biomedical engineering kHz ms Soft/custom Yes (mobile settings)

Cosmology Hz s Soft

Astrophysics kHz–MHz ms-us Soft Yes (remote locations)

Signal processing

Gravitational waves kHz ms Soft

Health monitoring kHz ms Custom Yes

Communications kHz ms Soft Yes (mobile settings)

Control systems

Accelerator controls kHz ms–µs Soft/custom

Plasma physics kHz ms Soft

TABLE 3 | Classification of domains and their system requirements with respect to real-time needs.

Domain Real-time data reduction Real-time analysis Closed-loop control

Detection/Event reconstruction

LHC Yes Yes No

Nuclear physics Yes No No

Dark matter-neutrino Yes No No

Image processing

Material synthesis Yes Yes Yes

Scanning probe microscopy Yes

Electron microscopy Yes

Biomedical engineering Yes

Cosmology Yes No No

Astrophysics Yes No No

Signal processing

Gravitational waves Yes No No

Health monitoring Yes Yes Yes

Communications Yes Yes Yes

Control systems

Accelerator controls Yes Yes Yes

Plasma physics Yes Yes Yes

the memory hierarchy. In the majority of the use cases, the
latency involved with moving data from the front-end (detectors,
microscopes, sensors, etc.) dominates the total latency. One of the
prominent performance constraints is related to the utilization
and subsequent latency of the network that links the front-end
with the back-end. Current limitations on the speed of data
movement renders the CPU/GPU cluster-based systems unable
to meet the real-time requirements.

3.2.2. Custom Embedded Computing Devices
As the latency and throughput constraints are coupled with
challenging practical energy constraints, efforts have been
directed toward specialized computing systems to address the
hard real-time needs. An increasingly attractive paradigm is to
design components that are finely optimized for specific steps in
the data capture workflow. These components can be mapped
onto FPGA devices or they can be designed and manufactured

Frontiers in Big Data | www.frontiersin.org 22 April 2022 | Volume 5 | Article 787421



• A discussion of strategies for improving ML efficiency to enable lower latency

• Designing new efficient ML architectures

• NN & hardware co-design

• Quantization

• Pruning and sparse inference

• Knowledge distillation


• Discussion of automation of the NN  
architecture design process  
(Neural Architecture Search).


• Not mentioned in WP but important!

• Fault-tolerant, reliable ML

Sect 4: Efficient ML

13



Section 4: Hardware Architecture
• Discussion of different computing architectures: CPU, GPU, FPGA/ASIC


• DPU: Deep learning processing unit, customized for CNNs. These can be 
implemented on FPGAs or ASICs. 

14

Deiana et al. Fast Machine Learning in Science

FIGURE 7 | Taxonomy of compute architectures, differentiating CPUs, GPUs and DPUs.

companies offer also low power GPUs for the embedded space,
namely the AMD Vega mobile GPU (Hardawar, 2018) and
NVIDIA Jetson TX2 (Franklin, 2017) and AGX family (AGX,
2019).

In regards to memory, GPUs leverage specialized and highly
pipelined GDDR memory, which reduces capacity, but offers
much higher bandwidth (up to 732GBps). With NVIDIA’s
Turing family the latest devices include HBM2 DDR memory
stacks (Turing, 2019), which scales thememory access bandwidth
to 1TBps and beyond. Again this is particularly important to
address the needs of training workloads. For the same reason,
some of the DPUs introduce HBM2 as well, as discussed below.
In regards to power consumption, GPUs are high, up to 345 W.

One general challenge for GPUs is that they need to leverage
input parallelism to achieve high utilization of their large
compute arrays. Therefore, before execution inputs need to
be grouped into batches, which has adverse effects on end
latency. Further, GPUs are relatively high in power consumption.
Regarding quantization, support is limited to the inherent
datatypes, which are INT4 at smallest in the context of NVIDIA’s
Turing family, and INT8 for many of the others. Finally, the
corresponding software environments for GPUs, while not on
the same level as CPUs, have matured significantly and provide
increased ease of use.

FPGAs and ASICs: FPGA and ASIC customize hardware
architectures to the specifics of a given application. They can be
adapted in all aspects to suit a use case’s specific requirements.
This includes their IO capability, their functionality, or even to
suit specific performance or efficiency targets. FPGAs can be
reprogrammed whereas ASICs are fully hardened. This flexibility
allows for amortizing the design costs of the circuit across many
applications but comes at the expense of hardware resource cost
and performance.

FPGAs are a popular choice for the acceleration of CNNs.
Traditionally, an FPGA compute fabric consist of a sea of
lookup tables (LUTs) which are interconnected through a
programmable interconnect. The latest generations host millions
of LUTs. Furthermore, the fabric is interspersed with specialized
hardened compute blocks (DSPs) which accelerate n-bit multiply
accumulate operations (MACs), as well as SRAM blocks. The

latter are referred to as block RAMs (BRAMs), which hold
36 kbits, and Ultra RAMs (URAMs) which store 288 kbits.
More recent FPGA generations combine multiple FPGA dies,
referred to as super logic regions (SLRs), and leverage a
silicon interposer to provide connectivity between SLRs. This
technology is referred to as stacked silicon interconnect (SSIT)
and helps scale device capacity.

DPUs: As mentioned at the beginning, the term DPU (short
for deep learning processing unit) refers to a new type of
compute architecture, specialized for the acceleration of CNNs.
DPUs are customized for these types of applications in a
number of ways: types of operations supported, direct support of
tensors or matrices, inherent data types and supported numerical
representations, macro-architecture, explicitly managed and
specialized memory hierarchies, and which levels of parallelism
they exploit (input, output pixel, IFM, OFM, bit, and layer
and branch parallelism) as was introduced in the first part of
this chapter. We differentiate two types of DPUs, which can be
implemented with both ASIC technology and FPGAs.

Matrix of Processing Elements (MPE): The first type, as shown
on the left side of Figure 8, consists of an MPE that operates
on matrices or higher dimensional tensors. The processing
engines can be simple MACs, vector processors, or more
complex VLIW (Very Long Instruction Word) cores that can
support concurrent execution of different instructions. A popular
example in this category is Google’s Tensor Processing Unit
(TPU). Introduced in 2016 (Sato et al., 2017), it was originally
designed to accelerate Google’s TensorFlow framework. The
first generation supported integer arithmetic with a massively
parallel INT8 matrix-multiply engine. The second generation
TPU was announced in May 2017 (Jouppi et al., 2017), and
the third generation in May 2018 (Teich, 2018). These newer
chips boast improved memory performance as well as support
for floating point specifically aimed at training. There are a
number of startups introducing custom hardware that fall into
this category. Within the cloud, there are Graphcore, Groq, and
Wave Computing. Within the embedded space, where the design
constraints are even more stringent, we find even more solutions.
Most are secretive about the details of their designs. Intel is
investigating several custom accelerators and has for that purpose
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pipelined GDDR memory, which reduces capacity, but offers
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stacks (Turing, 2019), which scales thememory access bandwidth
to 1TBps and beyond. Again this is particularly important to
address the needs of training workloads. For the same reason,
some of the DPUs introduce HBM2 as well, as discussed below.
In regards to power consumption, GPUs are high, up to 345 W.

One general challenge for GPUs is that they need to leverage
input parallelism to achieve high utilization of their large
compute arrays. Therefore, before execution inputs need to
be grouped into batches, which has adverse effects on end
latency. Further, GPUs are relatively high in power consumption.
Regarding quantization, support is limited to the inherent
datatypes, which are INT4 at smallest in the context of NVIDIA’s
Turing family, and INT8 for many of the others. Finally, the
corresponding software environments for GPUs, while not on
the same level as CPUs, have matured significantly and provide
increased ease of use.

FPGAs and ASICs: FPGA and ASIC customize hardware
architectures to the specifics of a given application. They can be
adapted in all aspects to suit a use case’s specific requirements.
This includes their IO capability, their functionality, or even to
suit specific performance or efficiency targets. FPGAs can be
reprogrammed whereas ASICs are fully hardened. This flexibility
allows for amortizing the design costs of the circuit across many
applications but comes at the expense of hardware resource cost
and performance.

FPGAs are a popular choice for the acceleration of CNNs.
Traditionally, an FPGA compute fabric consist of a sea of
lookup tables (LUTs) which are interconnected through a
programmable interconnect. The latest generations host millions
of LUTs. Furthermore, the fabric is interspersed with specialized
hardened compute blocks (DSPs) which accelerate n-bit multiply
accumulate operations (MACs), as well as SRAM blocks. The

latter are referred to as block RAMs (BRAMs), which hold
36 kbits, and Ultra RAMs (URAMs) which store 288 kbits.
More recent FPGA generations combine multiple FPGA dies,
referred to as super logic regions (SLRs), and leverage a
silicon interposer to provide connectivity between SLRs. This
technology is referred to as stacked silicon interconnect (SSIT)
and helps scale device capacity.

DPUs: As mentioned at the beginning, the term DPU (short
for deep learning processing unit) refers to a new type of
compute architecture, specialized for the acceleration of CNNs.
DPUs are customized for these types of applications in a
number of ways: types of operations supported, direct support of
tensors or matrices, inherent data types and supported numerical
representations, macro-architecture, explicitly managed and
specialized memory hierarchies, and which levels of parallelism
they exploit (input, output pixel, IFM, OFM, bit, and layer
and branch parallelism) as was introduced in the first part of
this chapter. We differentiate two types of DPUs, which can be
implemented with both ASIC technology and FPGAs.

Matrix of Processing Elements (MPE): The first type, as shown
on the left side of Figure 8, consists of an MPE that operates
on matrices or higher dimensional tensors. The processing
engines can be simple MACs, vector processors, or more
complex VLIW (Very Long Instruction Word) cores that can
support concurrent execution of different instructions. A popular
example in this category is Google’s Tensor Processing Unit
(TPU). Introduced in 2016 (Sato et al., 2017), it was originally
designed to accelerate Google’s TensorFlow framework. The
first generation supported integer arithmetic with a massively
parallel INT8 matrix-multiply engine. The second generation
TPU was announced in May 2017 (Jouppi et al., 2017), and
the third generation in May 2018 (Teich, 2018). These newer
chips boast improved memory performance as well as support
for floating point specifically aimed at training. There are a
number of startups introducing custom hardware that fall into
this category. Within the cloud, there are Graphcore, Groq, and
Wave Computing. Within the embedded space, where the design
constraints are even more stringent, we find even more solutions.
Most are secretive about the details of their designs. Intel is
investigating several custom accelerators and has for that purpose

Frontiers in Big Data | www.frontiersin.org 28 April 2022 | Volume 5 | Article 787421

Deiana et al. Fast Machine Learning in Science

FIGURE 8 | DPU architectures: Matrix of Processing Engines (MPE) on the left, and spatial architecture on the right.

acquired a number of startups, namely Nervana, Habana, and
Movidius. Fathom (Armasu, 2016) is Movidius’ ultra low power
Neural Compute Stick (NCS) which operates at about 1 W. Also,
ARM offers specialized CNN processors in the form of their
Ethos family, boosting performance up to 4TOPs with support
for INT8 and INT16 datatypes.

As mentioned above, DPUs provide specialized datatypes
to execute heavily quantized, reduced precision CNN
implementations. At the extreme, binarized neural networks
(which are very high throughput at extremely low power)
are exploited in the following ASICs: BinarEye (Moons et al.,
2018), BNN Custom Fabric (Ando et al., 2017), and IBM
AI Accelerator (IBM, 2018). Also, Lattice has announced
binarized neural network libraries targeting low power FPGA
and achieving 1 TOPs/W (Lattice, 2018). Custom floating point
representations are also considered. For example, Microsoft’s
Brainwave project (Chung et al., 2018) uses this approach with
the aim of applying FPGAs to CNNs at datacenter scale. However,
typically the hardened versions in ASICs only support INT8, as
lower precisions could potentially limit their application scope.
FPGA-based MPE implementations such as Xilinx’s xDNN are
less constrained and in principle can be customized as needed.

Similar to the GPU, but perhaps to a lesser degree, DPUs
leverage input, IFM (input feature map) and OFM (output
feature map) parallelism, which requires buffering of inputs
and may have adverse effects on latency as well. A particular
challenge arises in the context of software environments, which
differ for all vendors and are less mature than what we have
observed for CPUs and GPUs. Typically, they are limited to
support execution of very specific layer types (sometimes even
restricted in regards to parameter ranges) and neural networks,
whereby the range of layer types and neural network models is
continuously expanding.

In summary, through their specialization, these
implementations minimize hardware cost, maximize
performance and optimize efficiency by exploiting specific
precision arithmetic with a specialized instruction set and

customized memory system. However, in order to gain a
performance advantage, the algorithms need to be adapted to
leverage these features.

Spatial DPUs: The second type of DPU leverages spatial
acceleration and exploits layer and branch parallelism. Popular
examples are hls4ml and FINN (Umuroglu et al., 2017; Blott
et al., 2018). To that extent, the hardware architecture is even
further specialized to the specifics of a given deep learning
topology. This is visualized on the right side of Figure 8. The
hardware architecture actually mimics the given deep learning
topology and the inputs are streamed through the architecture.
Every layer is instantiated with a dedicated compute datapath.
Each layer has a dedicated weight buffer, and activation buffers
in-between layers are FIFOs of minimal size. They buffer just
enough data to feed the next set of convolutions in the next layer.
This is substantially more efficient compared to the first type of
DPUs or GPUs and yields reduced latency.

DPUs and GPUs generally perform a layer-by-layer compute,
where a sequence of images has to be buffered in order to extract
maximum compute out of the platform (input, IFM and OFM
parallelism). For this, the device buffers a batch of images before
computing the first layer of all images. Then all intermediate
results are buffered, and then the next layer is computed, and
so on. Hence the latency is heavily dependent on the size of the
input batch.

As a result, spatial DPUs have an advantage in regard
to latency. This level of customization is only possible with
programmable hardware architectures such as FPGAs, as they
can adapt the hardware architecture for different use cases.
This generally wouldn’t make sense in the context of an
ASIC accelerator, as that would yield an ASIC only capable
of accelerating one specific topology, which would be far too
restrictive in scope. The limitation in spatial architectures is the
scalability in the numbers of layers. Each layer comes at a resource
cost overhead and there is a maximum number of layers that can
be created within a single device. As a result, some extremely deep
CNNs might not be able to fit into a single device. Microsoft’s
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FIGURE 9 | FINN compiler flow.

and finally the hardware accelerator can be generated, various
transformations must be applied. The main transformations
involved are summarized below.

Although the PyTorch description of the network is mostly
quantized, it may still contain some floating-point operations
from e.g., preprocessing, channelwise scaling or batchnorm
layers. In order to generate a hardware accelerator from the
model, these floating-point operations must be absorbed into
multi-level thresholds, so that a functionally identical network
of integer operations is created. The transformation to achieve
this is called streamlining, as described by Umuroglu and
Jahre (Umuroglu and Jahre, 2017). During streamlining, floating-
point operations are moved next to each other, collapsed
into a single operation, and absorbed into succeeding multi-
thresholding nodes.

Next, high-level operations in the graph are lowered to
simpler implementations that exist in the FINN HLS-based
hardware library. For instance, convolutions will be lowered to
a sliding window node followed by a matrix-vector node, while
pooling operations will be implemented by a sliding window
followed by an aggregation operator. The resulting graph now
consists of layers that can be converted to hardware building
block equivalents. Each node corresponds to a Vivado HLS C++
function call, from which an IP block per layer can be generated
using Vivado. The resources utilized by each hardware building
block can be controlled through specific attributes passed from
FINN to Vivado. For example, multiplications can be performed
with LUTs or DSP blocks, and parameters can be stored in
distributed, Block, or Ultra RAM.

Finally, the folding process assigns compute resources to each
layer to obtain the desired throughput with a balanced pipeline
by fine-tuning their degree of parallelism. To enable per-layer
specialization without reconfiguration and minimize latency,
FINN creates dedicated per-layer hardware interconnected with
FIFO channels, thus the outermost loop across L layers is always
fully pipelined. Once the folding is specified, resource estimates
can be produced for each node. There are several ways to estimate
the resources. Even before IP blocks are generated from the HLS
layers, an estimate of the resources per layer can be made by
using analytical models based on the concepts from the FINN-
R paper (Blott et al., 2018). Estimations can also be extracted
from Vivado HLS after IP generation, though these results are

still estimations that may differ from the resource usage of the
final implementation due to synthesis optimizations.

The Backend is responsible for consuming the IR graph
and backend-specific information to create a deployment
package, also implemented using the transformation concept.
To get the inference accelerator, between the layers FIFOs
are inserted, which can be sized automatically by the FINN
compiler. Afterwards, the single IP blocks are stitched together
and synthesized. The stitched IP can be manually integrated
into a system, or inserted into an appropriate shell for the
target platform. If the target platform is an Alveo card, the
design is exported as a Vivado Design Checkpoint (DCP),
followed by generation of Xilinx Vitis (Kathail, 2020) object files
and linking.

Summary of Hardware/Software Codesign and FPGA-Based
Systems: In summary, CPUs are the most general solution for
CNN inference but high in power. GPUs and DPUs offer highest
performance, whereby GPU are more expensive in regards to
energy cost. FPGAs offer several tradeoffs that may well fit rapidly
moving application domains. FPGAs can adopt any precision
and numerical representation, which provides utmost flexibility
and leverages optimization with quantization to the maximum,
whereas hardened approaches need to default to the next higher
supported precision where the reduced precision variable can be
embedded. Furthermore, through the spatial dataflow approach,
much lower latency can be achieved. However, the complexity
of programming FPGAs limits their deployment. Tools such
as hls4ml and FINN are frameworks specifically created for
the ML domain where they automate the process of hardware
generation for the end-user thus hiding the associated design
complexity of FPGAs and enabling them for the previously
discussed end applications.

4.5. Beyond-CMOS Neuromorphic
Hardware
With rapidly growing machine learning applications comes
the acute need for their efficient hardware implementations.
Most of the efforts are focused on digital CMOS technology,
such as implementations based on general-purpose TPUs/GPUs,
FPGAs, and more specialized ML hardware accelerators. The
steady improvements in such hardware platforms’ performance
and energy efficiency over the past decade are attributed to
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Beyond-CMOS Neuromorphic Hardware
• In this section, the most prominent emerging technology proposals, 

including those based on emerging dense analog memory device circuits, 
are grouped according to the targeted low-level neuromorphic 
functionality.

• Analog Vector-by-Matrix Multiplication

• Stochastic Vector-by-Matrix Multiplication

• Spiking Neuron and Synaptic Plasticity

• Reservoir Computing

• Hyperdimensional Computing / Associative Memory
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FIGURE 10 | Analog vector-by-matrix multiplication (VMM) in a crossbar

circuit with adjustable crosspoint devices. For clarity, the output signal is

shown for just one column of the array, while sense amplifier circuitry is not

shown. Note that other VMM designs, e.g., utilizing duration of applied voltage

pulses, rather than their amplitudes, for encoding inputs/outputs, are now

being actively explored see, e.g., their brief review in Bavandpour et al. (2018).

the memory devices can be reliably programmed, and the write
speed/energy are less critical. Additionally, VMM operations in
the inference of many neural networks could be performed with
moderate, less than 8-bit precision, without incurring accuracy
loss (Yang and Sze, 2019), which further relaxes requirements for
analog properties and permits more I-V non-idealities and noise.

The most advanced neuromorphic inference circuits
have been demonstrated with more mature floating-gate
transistor memory circuits. Up until recently, such circuits
were implemented primarily with “synaptic transistors" (Diorio
et al., 1996), which may be fabricated using the standard CMOS
technology, and several sophisticated, efficient systems were
demonstrated (Chawla et al., 2004; Hasler and Marr, 2013;
George et al., 2016). However, these devices have relatively
large areas (>103 F2, where F is the minimum feature size),
leading to higher interconnect capacitance and hence larger
time delays. More recent work focused on implementing
mixed-signal networks with much denser (∼40 F2) commercial
NOR-flash memory arrays redesigned for analog computing
applications (Bayat et al., 2015; Guo et al., 2017b). For example,
a prototype of a 100k+-cell two-layer perceptron network
fabricated in a 180-nm process with modified NOR-flash
memory technology was reported in Guo et al. (2017a).
It performed reliably, with negligible long-term drift and
temperature sensitivity, and reproducible classification of the
MNIST benchmark set images with ∼ 95% fidelity and sub-1-µs
time delay and sub-20-nJ energy consumption per pattern. The
energy-delay product was six orders of magnitude better than
the best (at that time) 28-nm digital implementation performing
the same task with a similar fidelity (Guo et al., 2017a).

Recent theoretical studies showed that neuromorphic
inference circuits could be also implemented with much denser
3D-NAND flash memories (Bavandpour et al., 2019, 2020;
Lee et al., 2019), projected to scale eventually to 10 terabits
per square inch density. In the long term, the most promising
are perhaps circuits based on metal-oxide resistive switching

random access (ReRAM for short, which are also called metal-
oxide memristors) (Yang et al., 2013; Yu, 2018), especially
their passively integrated (0T1R) technology variety (Kim
et al., 2019). Indeed, due to the ionic switching mechanism,
ReRAM devices with dimensions below 10 nm still retain
excellent analog properties and year-scale retention (Govoreanu
et al., 2013). Furthermore, a low-temperature fabrication
budget allows monolithic vertical integration of multiple
ReRAM crossbar circuits, further increasing effective density
(Adam et al., 2017). There has been rapid progress in scaling
up the complexity of ReRAM-based neuromorphic circuit
demonstrations over the past several years (Prezioso et al.,
2015; Bayat et al., 2018; Hu et al., 2018b; Kim et al., 2019; Lin
et al., 2020b; Liu et al., 2020b; Yao et al., 2020a). However, the
ReRAM technology is still in much need of improvement. In
addition to high device variations, another remaining issue is
high write currents and operating conductances, which must
be decreased by at least one order of magnitude to reduce
the significant overhead of peripheral circuits (Kim et al.,
2019).

The device requirements for training hardware accelerators
are different and much more stringent. For instance, long
retention is not required because weights are frequently
updated. That allows using volatile memories in analog VMM
circuits, such as interfacial memristors based on electron
trapping/detrapping switching (Chu et al., 2014; Sheridan
et al., 2017; Cai et al., 2019a) and solid-state-electrolyte
memories (Fuller et al., 2019; Berggren et al., 2020; Yeon et al.,
2020), or even capacitor-based memories controlling current
via crosspoint transistors (Ambrogio et al., 2018). However,
the toughest challenge is much higher computing and weight
precision required for training operation and the need for
efficient schemes for weight updates, which in turn necessitate
drastically tighter device variations. The additional related
requirement is that the change in device conductance upon
applying the write pulse should not depend on its current state
(the so-called linearity of update property). Otherwise, accurate
conductance adjustment would require sending a unique write
pulse based on the current device state, which would be hardly
compatible with fast (in parallel) weight update.

Phase change memories have also been investigated as
candidates for variable resistors in analog VMM circuits (Burr
et al., 2015; Joshi et al., 2020), though their main drawback
is significant drift in the conductive state over time. High
write endurance, high density (with vertical 3D-NAND-like
integrated structure), and long retention are demonstrated in 1T
Ferroelectric RAM devices. There is much excitement about such
devices’ applications in training and inference accelerators (Ni
et al., 2018), though their analog properties are probably inferior
to ReRAM. The significant drawbacks of magnetic devices, such
as magnetic tunnel junction memories, are smaller on/off current
ratios, insufficient for practical VMM circuits, and poor analog
properties for scaled-down devices (Grollier et al., 2020).

The potentials of using light for implementing fast and large-
fanout interconnect and linear computations, such as multiply-
and-add operation, have motivated photonic neuromorphic
computing research (Hamley et al., 2019; Berggren et al., 2020;
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Promote interdisciplinary collaborations 

physicists, computer scientists, electrical and computer engineers, software engineers

Custom embedded systems Off-the-shelf coprocessors

Open data, task-based, and data-based benchmarks

Be nimble: abstraction, portability, 
containerization

Build open-source, multi-technology 

codesign workflows

Novel ML research concepts: efficient, fault-tolerant, reliable

Support ecosystem integration and operation 
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Promote interdisciplinary collaborations 

physicists, computer scientists, electrical and computer engineers, software engineers

Custom embedded systems Off-the-shelf coprocessors

Open data, task-based, and data-based benchmarks

Be nimble: abstraction, portability, 
containerization

Build open-source, multi-technology 

codesign workflows

Novel ML research concepts: efficient, fault-tolerant, reliable

Support ecosystem integration and operation 

Extremely valuable to 
learn from non-domain 
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to find common goals
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technologies
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there are no OTS 
solutions
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consolidate progress

Projectization makes 
longevity and support 
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