

Prospects on theory inputs for the firstrow CKM unitarity tests

Chien-Yeah Seng

Helmholtz-Institut für Strahlen- und Kernphysik and

Bethe Center for Theoretical Physics, Universität Bonn

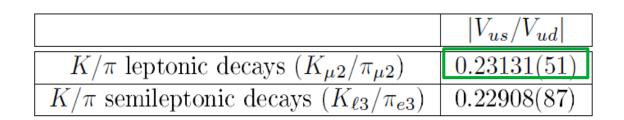
cseng@hiskp.uni-bonn.de

Snowmass Community Summer Study Workshop, University of Washington, Seattle

19 July, 2022

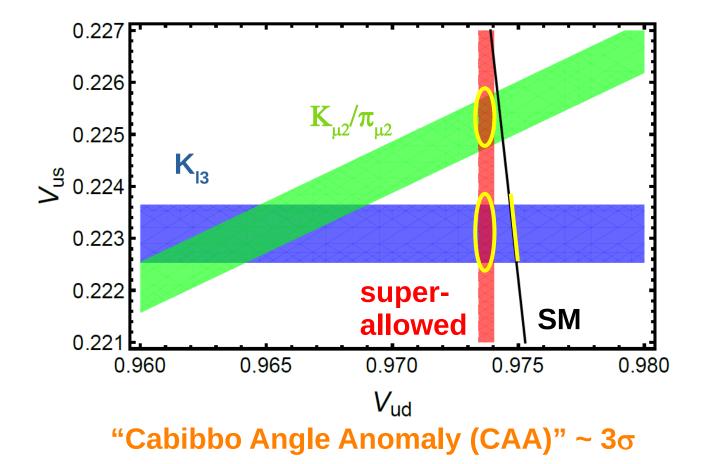
Beta decays place one of the most stringent tests of SM through precision measurements of the first-row CKM matrix elements V_{ud} and V_{us}

	$ V_{ud} $
Superallowed nuclear decays $(0^+ \rightarrow 0^+)$	0.97373(31)
Free n decay	0.97377(90)
Mirror nuclei decays	0.9739(10)
Pion semileptonic decay (π_{e3})	0.9740(28)


 V_{ud}

 V_{us}

V_{us}/V_{ud}


	$ V_{us} $	
Kaon semileptonic decays $(K_{\ell 3})$	0.22308(55)	
Tau decays	0.2207(14)	HFLAV, 2206.0750
Hyperon decays	0.2250(27)	2200.0730

1

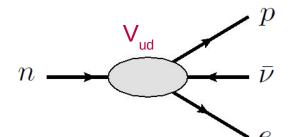
Several anomalies are recently observed in the first-row CKM matrix elements!

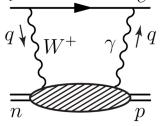
SM prediction:
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

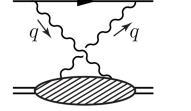
An example: First-row CKM unitarity with $|V_{ud}|$ from 0⁺ beta decay and $|V_{us}|$ from K₁₃ decay

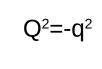
$$|V_{ud}|^2_{0^+} + |V_{us}|^2_{K_{\ell 3}} + |V_{ub}|^2 - 1 = -0.0021(7)$$

$ V_{ud} ^2_{0^+} + V_{us} ^2_{K_{\ell_3}} - 1$	-2.1×10^{-3}
$\delta V_{ud} ^2_{0^+}, \exp$	2.1×10^{-4}
$\delta V_{ud} ^2_{0^+}, { m RC}$	1.8×10^{-4}
$\delta V_{ud} ^2_{0^+}, \mathbf{NS}$	5.3×10^{-4}
$\delta V_{us} ^2_{K_{\ell 3}}, ext{exp+th}$	1.8×10^{-4}
$\delta V_{us} ^2_{K_{\ell 3}}, \mathbf{lat}$	1.7×10^{-4}
Total uncertainty	6.5×10^{-4}
Significance level	3.2σ

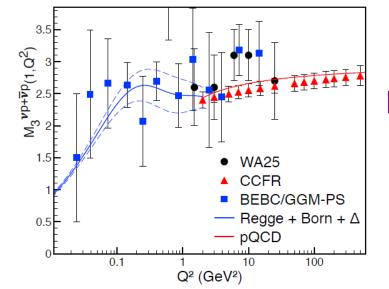

SOURCES OF UNCERTAINTY:


CYS, Galviz, Marciano and Meißner, 2022 PRD


 V_{ud} : Theory errors dominate V_{us} : Theory/experimental errors comparable


Single-nucleon radiative corrections (RC)

Primary source of uncertainty: the "single-nucleon axial γW-box diagram"



Dispersive representation:

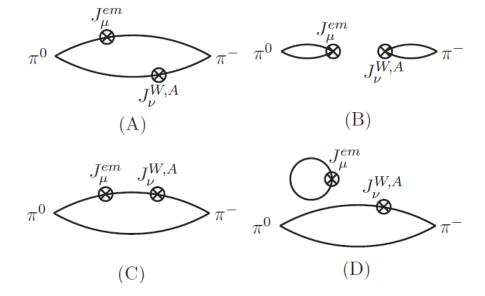
CYS, Gorchtein, Patel and Ramsey-Musolf, 2018 PRL

$$\Box_{\gamma W}^{V} = \frac{\alpha_{em}}{\pi \mathring{g}_{V}} \int_{0}^{\infty} \frac{dQ^{2}}{Q^{2}} \frac{M_{W}^{2}}{M_{W}^{2} + Q^{2}} \int_{0}^{1} dx \frac{1 + 2r}{(1 + r)^{2}} F_{3}^{(0)}(x, Q^{2})$$

Data input: Parity-odd structure function F_3 from neutrino-nucleus scattering[Vud]: $0.97420(21) \rightarrow 0.97370(14)$ Pre-20182018

Confirmation by independent studies:

Czarnecki, Marciano and Sirlin, 2019 PRD CYS, Feng, Gorchtein and Jin, 2020 PRD Hayen, 2021 PRD Shiells, Blunden and Melnitchouk, 2021 PRD Major limiting factor of the DR treatment: low quality of the neutrino data in the most interesting region: $Q^2 \sim 1 GeV^2$

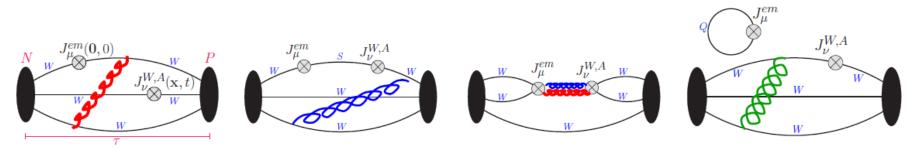

Ongoing program: Calculate the box diagram directly with **lattice QCD**

Year 2020: First realistic lattice QCD calculation of the simpler **pion** axial γW-box diagram

Feng, Gorchtein, Jin, Ma and CYS, 2020 PRL

Consequences:

- Significant reduction of the theory uncertainty in **pion** semileptonic decay (π_{e3})
- Indirect implications on the free-neutron axial γW-box diagram


More in Luchang's talk!

Single-nucleon radiative corrections (RC)

Major limiting factor of the DR treatment: low quality of the neutrino data in the most interesting region: $Q^2 \sim 1 GeV^2$

Ongoing program: Calculate the box diagram directly with **lattice QCD**

Neutron axial γ W-box diagram is more complicated, but on the way.

(R. Gupta, Rare Processes and Precision Frontier Townhall Meeting, 2020)

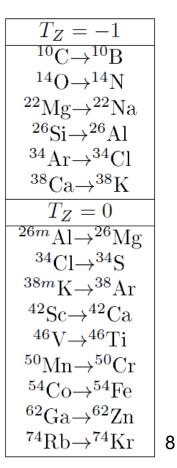
Possible alternative approach using Feynman-Hellmann theorem (FHT) CYS and Meißner, 2019 PRL Superallowed $0^{+} \rightarrow 0^{+}$ nuclear beta decays provides the best measurement of V_{ud}

Master formula:

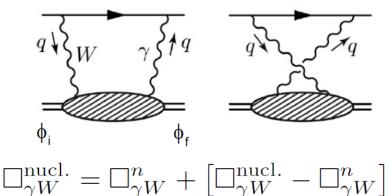
$$|V_{ud}|^2 = \frac{2984.43 \, s}{\mathcal{F}t \left(1 + \Delta_R^V\right)}.$$

Corrected ft (half-life*statistical function)-value:

Measured ft-value


$$\mathcal{F}t = ft\left(1 + \delta_{\rm R}'\right)\left(1 + \delta_{\rm NS} - \delta_{\rm C}\right)$$

Nucleus-dependent "outer corrections" (under control)

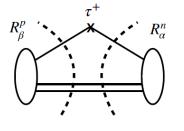

Nuclear structure effects in inner RC

Isospin-breaking corrections

Best-measured decays:

 $\delta_{_{NS}}$: nuclear modifications of the free-nucleon γW box diagram

LARGEST source of uncertainty in V_{ud}!


Ongoing program: Nuclear structure functions at low Q² with **ab-initio methods**

$$\frac{1}{8\pi} \int d^4x e^{iq \cdot x} \langle \phi_f(p) | [J^{\mu}_{\rm em}(x), J^{\dagger \nu}_W(0)] | \phi_i(p) \rangle$$

$$= \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) \underline{F_1} + \frac{\hat{p}^{\mu}\hat{p}^{\nu}}{p \cdot q} \underline{F_2} - \frac{i\varepsilon^{\mu\nu\alpha\beta}q_{\alpha}p_{\beta}}{2p \cdot q} \underline{F_3}$$

Inputs to the dispersion integral

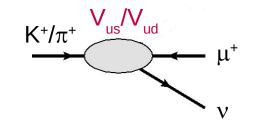
Light nuclei: Quantum Monte Carlo, No-Core Shell Model, ... Medium-size nuclei: Coupled-Cluster method, δ_c : isospin-breaking (ISB) corrections to nuclear wavefunctions

Mainly due to Coulomb interaction between protons

$$V_C = V_C^{(0)} + V_C^{(1)}$$

10

Computed systematically within **shell model** (Hardy-Towner), but were questioned in several aspects:


- 1. Theoretical inconsistencies Miller and Schwenk, 2008 PRC, 2009 PRC; Condren and Miller, 2201.10651
- 2. Cannot be reproduced by other nuclear theory calculations, which generically predict smaller δ_c Hartree-Fock, DFT, RPA, isovector monopole resonance...

New Thoughts: Possible relation to the neutron skin of the stable nuclei?

$$\delta_C \propto \frac{1}{3} \sum_{a} \frac{|\langle a; 0| |V_C^{(1)}| |g; 1\rangle|^2}{(E_{a,0} - E_g)^2} + \frac{1}{2} \sum_{a \neq g} \frac{|\langle a; 1| |V_C^{(1)}| |g; 1\rangle|^2}{(E_{a,1} - E_g)^2} - \frac{5}{6} \sum_{a} \frac{|\langle a; 2| |V_C^{(1)}| |g; 1\rangle|^2}{(E_{a,2} - E_g)^2}$$
$$R_n - R_p)_{V_C^{(1)}} \propto \sum_{a \neq g} \frac{|\langle a; 1| |V_C^{(1)}| |g; 1\rangle|^2}{E_{a,1} - E_g} + \sum_{a} \frac{|\langle a; 2| |V_C^{(1)}| |g; 1\rangle|^2}{E_{a,2} - E_g}$$

Kaon/pion leptonic decay ($K_{\mu 2}/\pi_{\mu 2}$)

$$\frac{|V_{us}|f_{K^+}}{|V_{ud}|f_{\pi^+}} = \left[\frac{\Gamma_{K_{\mu 2}}M_{\pi^+}}{\Gamma_{\pi_{\mu 2}}M_{K^+}}\right]^{1/2} \frac{1 - m_{\mu}^2/M_{\pi^+}^2}{1 - m_{\mu}^2/M_{K^+}^2} \left(1 - \delta_{\rm EM}/2\right)$$

Marciano, 2004 PRL; Cirigliano and"axial ratio" RNeufeld, 2011 PLB

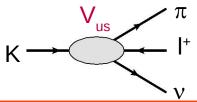
Lattice QCD inputs: K^+/π^+ decay constants

$$\begin{split} N_f &= 2 + 1 + 1 \quad : \quad f_{K^+} / f_{\pi^+} = 1.1932(21) \\ N_f &= 2 + 1 \quad : \quad f_{K^+} / f_{\pi^+} = 1.1917(37) \\ N_f &= 2 \quad : \quad f_{K^+} / f_{\pi^+} = 1.205(18) \end{split} \qquad \qquad \textit{FLAG 2021}$$

Electromagnetic RC $\delta_{\rm EM} = \delta_{\rm EM}^K - \delta_{\rm EM}^\pi = -0.0069(17)$ Knecht et al., 2000 EPJC in ChPT: Advantage: LECs cancel in the ratio

Direct lattice QCD calculation of the EMRC+isospin breaking correction (contained in the physical K^+/π^+ decay constants) consistent with ChPT result, with slightly lower uncertainty *Giusti et al, 2018 PRL*

Total:
$$|V_{us}/V_{ud}| = 0.23131(41)_{\text{lat}}(24)_{\exp}(19)_{\text{RC}}$$



$$\Gamma_{K_{\ell 3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\rm EW} |f_+^{K^0 \pi^-}(0)|^2 I_{K\ell}^{(0)} \left(1 + \delta_{\rm EM}^{K\ell} + \delta_{\rm SU(2)}^{K\pi}\right)$$

Measurements of branching ratio exist in all channels (most recent: $K^{s}_{\ \mu3}$)

Theory Inputs:

Kπ form factor at t=0 Phase-space factor Long-distance electromagnetic RC ISB correction

$$_{K_{\ell3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\rm EW} \left[f_{\pm}^{K^0 \pi^-}(0) \right]^2 I_{K\ell}^{(0)} \left(1 + \delta_{\rm EM}^{K\ell} + \delta_{\rm SU(2)}^{K\pi} \right)$$

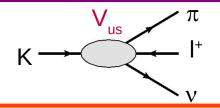
Kπ form factor at t=0: $\langle \pi^-(p') | J_W^\mu | K^0(p) \rangle = f_+^{K^0 \pi^-}(t) (p+p')^\mu + f_-^{K^0 \pi^-}(t) (p-p')^\mu$

Lattice QCD inputs:

Master formula:

Γ

$$N_{f} = 2 + 1 + 1 \quad : \quad f_{+}(0) = 0.9698(17)$$


$$N_{f} = 2 + 1 \quad : \quad f_{+}(0) = 0.9677(27)$$

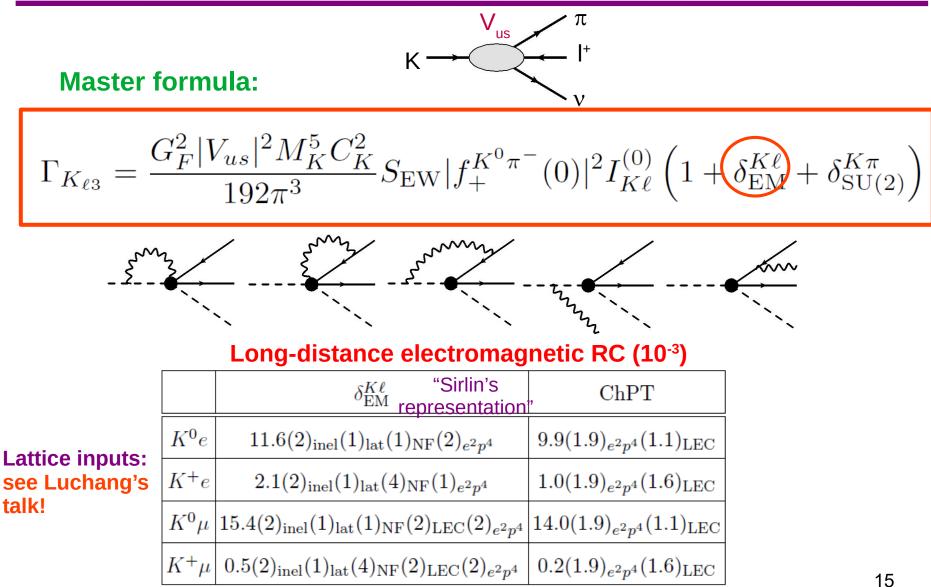
$$N_{f} = 2 \quad : \quad f_{+}(0) = 0.9560(57)(62)$$
FLAG 2021

New result from PACS (N_f=2+1): $f_+(0) = 0.9615(10)\binom{+47}{-2}(5)$ Ishikawa et al, 2206.08654

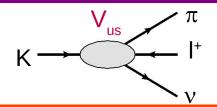
13

Master formula:

$$\Gamma_{K_{\ell3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\rm EW} |f_+^{K^0 \pi^-}(0)| \mathcal{I}_{K\ell}^{(0)} \left(1 + \delta_{\rm EM}^{K\ell} + \delta_{\rm SU(2)}^{K\pi}\right)$$


Phase-space factor:
$$I_{K\ell}^{(0)} = \int_{m_{\ell}^2}^{(M_K - M_\pi)^2} \frac{dt}{M_K^8} \bar{\lambda}^{3/2} \left(1 + \frac{m_{\ell}^2}{2t}\right) \left(1 - \frac{m_{\ell}^2}{t}\right)^2 \left[\bar{f}_+^2(t) + \frac{3m_{\ell}^2 \Delta_{K\pi}^2}{(2t + m_{\ell}^2)\bar{\lambda}} \bar{f}_0^2(t)\right]$$

probes the **t-dependence** of the $K\pi$ form factors.


Rescaled $K\pi$ form factors

Obtained by fitting to the K_{I3} Dalitz plot with specific parameterizations of f(t) (Taylor expansion, z-expansion, dispersive parameterization, pole parameterization ...)

		-		
The dispersive parameterization	Mode	Update		
currently quotes the smallest uncertainty:	K ⁰ _{e3}	0.15470(15)	M. Moulson,	
	<i>K</i> ⁺ _{<i>e</i>3}	0.15915(15)	in the 11 th International	
Future: Direct lattice	$K^{0}_{\ \mu 3}$	0.10247(15)	Workshop on the CKM Unitarity	
calculation of the t- dependence?	$K^{+}_{\ \mu 3}$	0.10553(16)	Triangle, 2021	14

CYS, Galviz, Gorchtein and Meißner, 2022 JHEP Cirigliano et al., 2008 JHEP

Master formula:

$$\Gamma_{K_{\ell 3}} = \frac{G_F^2 |V_{us}|^2 M_K^5 C_K^2}{192\pi^3} S_{\rm EW} |f_+^{K^0 \pi^-}(0)|^2 I_{K\ell}^{(0)} \left(1 + \delta_{\rm EM}^{K\ell} + \delta_{\rm SU(2)}^{K\pi}\right)$$

ISB correction: presents only in the K⁺ channel by construction.

$$\begin{split} \delta_{\rm SU(2)}^{K^+\pi^0} \equiv \left(\frac{f_+^{K^+\pi^0}(0)}{f_+^{K^0\pi^-}(0)}\right)^2 - 1 = \frac{3}{2} \frac{1}{Q^2} \left[\frac{\hat{M}_K^2}{\hat{M}_\pi^2} + \frac{\chi_{p^4}}{2} \left(1 + \frac{m_s}{\hat{m}}\right)\right] & \text{(neglecting small EM contributions)}\\ Q^2 = \left(m_s^2 - \hat{m}^2\right) / \left(m_d^2 - m_u^2\right) \end{split}$$

Most recent lattice QCD inputs: FLAG 2021

$$Q = 23.3(5)$$
, $m_s/\hat{m} = 27.42(12)$ $N_f = 2 + 1$
returns: $\delta_{SU(2)}^{K^+\pi^0} = 0.0457(20)$

Phenomenological inputs from $\eta \rightarrow 3\pi$ returns a somewhat larger value:

$$\delta_{\rm SU(2)}^{K^+\pi^0} = 0.0522(34)$$
 16

Colangelo, Lanz, Leutwyler and Passemar, 2018 EPJC

Summary

- Several **anomalies** at the level $\sim 3\sigma$ have been observed in the measurements of the **first-row CKM matrix elements** V_{ud} and V_{us} in **beta decay processes**.
- **SM theory inputs** that require further improvements are:
 - V_{ud} sector: <u>RC in single-nucleon and nuclear systems</u>, <u>ISB</u> <u>corrections in nuclear wavefunctions</u>
 - V_{us} sector: Lattice inputs of <u>Kaon/pion decay constants</u> and <u>K π </u> form factor, <u>RC in leptonic and semileptonic kaon decays</u>, <u>K₁₃</u> <u>phase-space factor</u>, <u>ISB corrections in K[±] semileptonic decays</u>
- Successful reduction of theory uncertainties above could increase the significance of the anomalies to more than 5σ
- Desirable future **experimental improvements**: $\underline{K}_{\underline{13}}$ and $\pi_{\underline{e3}}$ branching ratios, neutron lifetime and \underline{g}_A , ...

Thanks for your attention!