Lattice QCD input for the first row CKM unitarity tests

Luchang Jin (UConn)

Seattle Snowmass Summer Meeting 2022 July 19, 2022

Outline

Introduction

- Pion semi-leptonic decay γW-box diagram
 PRL 124, 192002 (2020) X. Feng, M. Gorchtein, LJ, P.X. Ma, C.Y. Seng
- Kaon semi-leptonic decay χPT low energy constants
 JHEP 10, 179 (2020) C.Y. Seng, X. Feng, M. Gorchtein, LJ, Meißner, Ulf-G.
 PRD 103, 114503 (2021) P.X. Ma, X. Feng, M. Gorchtein, LJ, C.Y. Seng
- Conclusion and outlook

CKM matrix elements, $|V_{ud}|$ and $|V_{us}|$

The unitarity relation for the first-row of the CKM matrix is:

$$\Delta_{\mathsf{CKM}} = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = 0.$$

According to PDG 2020, $\Delta_{CKM} = -0.0015(3)(4)$, where the first error is the uncertainty from $|V_{ud}|^2$ and the second error is the uncertainty from $|V_{us}|^2$.

- |V_{ud}| = 0.97370(10)_{exp.,nucl.}(10)_{RC} [0.14 per mil].
 From superallowed 0⁺ → 0⁺ nuclear β decays, which are pure vector transitions at leading order. PDG 2022 include additional large (27) uncertainty for nuclear structure. Neutron and pion β decay can determine as well, but currently have larger uncertainties.
- |V_{us}| = 0.2245(4) [1.8 per mil]
 From combined analysis of K → Iν and K → πIν decay processes. Lattice QCD inputs are essential and the current limiting factor.
- $|V_{ub}| = 0.00394(36)$. Very small, does not affect Δ_{CKM} much.

"That deviation could be due a problem with $|V_{ud}|$ theory (RC or NP), the lattice determination of $f_+(0)$ or new physics."

- E. Blucher and W.J. Marciano (PDG 2020)

 $|V_{\mu d}|, \gamma W$ -box diagram

- In superallowed nuclear β decay rates, one of the dominant uncertainties arises from the nucleus-independent electroweak radiative correction, Δ_R^V , which is universal for both nuclear and free neutron beta decay. J.C. Hardy, I.S. Towner (2015)
- Sirlin established that only the axial γW -box contribution is sensitive to hadronic scales. A. Sirlin (1978)
- Situation is similar for the charged pion β decay.

 $H_{\mu\nu}^{VA}(t,\vec{x}) = \langle H_f | T \left[J_{\mu}^{em}(t,\vec{x}) J_{\nu}^{W,A}(0) \right] | H_i \rangle$

 $K \to \ell \nu, K \to \pi \ell \nu$ and $|V_{\mu s}|$

- Dashed line is the CKM matrix first row unitary constraint.
- All the bands and line should cross the same point. There are visible tensions in the plot.
- QED and strong isospin breaking corrections from ChPT calculations.

 $K \to \ell \nu, K \to \pi \ell \nu$ and $|V_{\mu s}|$

- Dashed line is the CKM matrix first row unitary constraint.
- All the bands and line should cross the same point. There are visible tensions in the plot.
- QED and strong isospin breaking corrections for f_{K[±]}/f_{π[±]} from lattice QCD.
 [PRD 100 (2019) 034514] M. Di Carlo, D. Giusti, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo, S. Simula, N. Tantalo

Lattice QCD

6 / 26

Figure credit: Stephen R. Sharpe.

Outline

- Introduction
- Pion semi-leptonic decay γW-box diagram
 PRL 124, 192002 (2020) X. Feng, M. Gorchtein, LJ, P.X. Ma, C.Y. Seng
- Kaon semi-leptonic decay χPT low energy constants
 JHEP 10, 179 (2020) C.Y. Seng, X. Feng, M. Gorchtein, LJ, Meißner, Ulf-G.
 PRD 103, 114503 (2021) P.X. Ma, X. Feng, M. Gorchtein, LJ, C.Y. Seng
- Conclusion and outlook

The γW -box contribution for pion

Hadronic function in lattice QCD calculations:

Gluons and quark loops not directly connected to the operators are automatically included in the numerical Monte Carlo integration over all possible QCD gauge field configurations.

The γW -box contribution position integration

Results from the 64I ensemble (R is the upper limit of the Euclidean space-time range). Note that the weighting function $\omega(t, \vec{x})$ is calculated in the infinite volume. The momentum exchange Q can vary continuously instead of being constrained by $2\pi/L$.

The γW -box contribution momentum integration 10/26

Pion β decay

$$\Gamma_{\pi\ell3} = \frac{G_F^2 |V_{ud}|^2 m_\pi^5 |f_+^\pi(0)|^2}{64\pi^3} (1+\delta) I_\pi$$

- Here, m_{π} is the charged pion mass, I_{π} is the kinematic factor.
- ChiPT A. Czarnecki, W .Marciano, A. Sirlin (2019)

$$\delta = 0.0334(10)_{\text{LEC}}(3)_{\text{HO}}$$

• Sirlin' s parametrization A. Sirlin (1978)

$$\begin{split} \delta &= \frac{\alpha_e}{2\pi} \left[\bar{g} + 3 \ln \frac{m_Z}{m_p} + \ln \frac{m_Z}{m_W} + \tilde{a}_g \right] + \delta_{\text{HO}}^{\text{QED}} + 2 \Box_{\gamma W}^{VA} \big|_{\pi} \\ &= 0.0332(1)_{\gamma W}(3)_{\text{HO}} \end{split}$$

where $\frac{\alpha_e}{2\pi}\bar{g} = 1.051 \times 10^{-2}$, $\frac{\alpha_e}{2\pi}\tilde{a}_g \approx -9.6 \times 10^{-5}$, $\delta_{\rm HO}^{\rm QED} = 0.0010(3)$.

• Remaining theoretical uncertainty mainly comes from corrections of higher order in α_e .

Pion β decay and $|V_{ud}|$

- Further theoretical improvement requires a complete electroweak two-loop analysis.
- At present, with the PIBETA experiment, we have |V_{ud}| = 0.9740(28)_{exp}(1)_{th} from pion β decay. Recall PDG 2020 value is |V_{ud}| = 0.97370(10)_{exp.,nucl.}(10)_{RC}.
- Estimating the difference between pion and nucleon γW-box by hadronic models, combined with the precise lattice results for pion, we obtain a new value for nucleon γW-box. The tension persists.

```
PRD 101, 11, 111301 (2020) C.Y. Seng, X. Feng, M. Gorchtein, LJ
```

- This pion calculation provide experiences for the nucleon γW-box lattice calculation. In particular, we expect the discretization error being similar.
- Lattice calculation of the nucleon γW -box diagram in progress.

Outline

- Introduction
- Pion semi-leptonic decay γW-box diagram
 PRL 124, 192002 (2020) X. Feng, M. Gorchtein, LJ, P.X. Ma, C.Y. Seng
- Kaon semi-leptonic decay χPT low energy constants
 JHEP 10, 179 (2020) C.Y. Seng, X. Feng, M. Gorchtein, LJ, Meißner, Ulf-G.
 PRD 103, 114503 (2021) P.X. Ma, X. Feng, M. Gorchtein, LJ, C.Y. Seng
- Conclusion and outlook

The γW -box contribution lattice contractions

- Goal is to obtain the χPT low energy constants relevant to the QED radiative corrections in kaon semi-leptonic decay, which is largely independent of quark mass.
- Calculate the kaon semi-leptonic decay process in the flavor SU(3) limit with the light meson masses, m_π, m_κ, m_η, equal to the physical pion mass.
- Use the same set of contractions and propagators as the pion β decay calculation, but adjust the charge factors appropriately.

The γW -box contribution momentum integration 15 / 26

Updates on the χ PT low energy constants (LECs) 16 / 26

Using the lattice results of $\Box_{\gamma W}^{\vee A}|_{\kappa^{0},SU(3)}$ evaluated in the flavor SU(3) limit, we can obtain the χ PT low energy constants (LECs).

Previously, the LECs are obtained via the minimal resonance model

S. Descotes-Genon, B. Moussallam (2005) B. Ananthanarayan, B. Moussallam (2004)

$$X_1 = -3.7(3.7) \times 10^{-3} \rightarrow -2.2(4) \times 10^{-3}$$

 $\tilde{X}_6^{\text{phys}} = 10.4(10.4) \times 10^{-3} \rightarrow 13.9(7) \times 10^{-3}.$

In χ PT, the radiative corrections (RCs) have two major sources of theoretical uncertainties:

- The input of the LECs at $\mathcal{O}(e^2p^2)$.
- The unknown $\mathcal{O}(e^2p^4)$ terms in the ChPT expansion.

In unit of percent:

$$\begin{split} \delta^{e}_{K^{0}} &= 0.99(19)_{e^{2}\rho^{4}}(11)_{\mathsf{LEC}} \quad \to \quad 1.00(19) \\ \delta^{\mu}_{K^{0}} &= 1.40(19)_{e^{2}\rho^{4}}(11)_{\mathsf{LEC}} \quad \to \quad 1.41(19) \\ \delta^{e}_{K^{\pm}} &= 0.10(19)_{e^{2}\rho^{4}}(16)_{\mathsf{LEC}} \quad \to \quad -0.01(19) \\ \delta^{\mu}_{K^{\pm}} &= 0.02(19)_{e^{2}\rho^{4}}(16)_{\mathsf{LEC}} \quad \to \quad -0.09(19). \end{split}$$

More theory work done in this direction, as mentioned in the previous talk by C.Y. Seng.

Outline

- Introduction
- Pion semi-leptonic decay γW-box diagram
 PRL 124, 192002 (2020) X. Feng, M. Gorchtein, LJ, P.X. Ma, C.Y. Seng
- Kaon semi-leptonic decay χPT low energy constants
 JHEP 10, 179 (2020) C.Y. Seng, X. Feng, M. Gorchtein, LJ, Meißner, Ulf-G.
 PRD 103, 114503 (2021) P.X. Ma, X. Feng, M. Gorchtein, LJ, C.Y. Seng
- Conclusion and outlook

• Pion β decay (the pion semi-leptonic decay $\pi \ell 3$)

$$\begin{split} \Box_{\gamma W}^{VA} \Big|_{\pi} &= 2.830(11)_{\rm stat}(26)_{\rm sys} \times 10^{-3} \\ \delta &= 0.0334(10)_{\rm LEC}(3)_{\rm HO} \quad \rightarrow \quad \delta = 0.0332(1)_{\gamma W}(3)_{\rm HO} \end{split}$$

18

• Kaon semi-leptonic decay in the flavor SU(3) limit (unphysical kaon mass):

$$\Box_{\gamma W}^{VA}|_{K^0, SU(3)} = 2.437(20)_{stat}(39)_{sys} \times 10^{-3}$$

• χPT low energy constants relevant to kaon semi-leptonic decay:

$$X_1 = -3.7(3.7) \times 10^{-3} \rightarrow -2.2(4) \times 10^{-3}, \quad \tilde{X}_6^{\text{phys}} = 10.4(10.4) \times 10^{-3} \rightarrow 13.9(7) \times 10^{-3},$$

- For better $|V_{ud}|$ from nucleus / neutron decay, nucleon $\Box_{\gamma W}^{VA}$ lattice calculation underway.
- For better $|V_{ud}|$ from pion β decay (also called pion semi-leptonic decay), more accurate experimental results is needed. The current theoretical determination is very accurate and clean.
- For better |V_{us}| from meson leptonic decay: We are working towards a complete lattice calculation of QED correction to meson leptonic decay with infinite volume QED using the infinite volume reconstruction method. The theoretical framework for this calculation is in preparation: N. Christ, X. Feng, LJ, C.T. Sachrajda, T. Wang in preparation.

First step, pion mass mass splitting calculation finished:

 $M_{\pi^{\pm}} - M_{\pi^0} = 4.534(42)_{\text{stat}}(43)_{\text{sys}} \text{ MeV}$ [PDG 2020: 4.5936(5) MeV]

PRL 128, 052003 (2022) X. Feng, LJ, M.J. Riberdy

Note that there are two other groups also working on this:

- Already finished calculation in QED_L scheme by RM123 group:
 PRD 100 (2019) 034514, M. Di Carlo, D. Giusti, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo, S. Simula, N. Tantalo
- Another calculation from RBC-UKQCD also uses QED_L scheme @ physical m_π:
 PoS LATTICE2021 (2022) 110, A. Z. N. Yong, P. Boyle, M. Di Carlo, F. Erben, V. Gülpers,
 M. T. Hansen, T. Harris, N. Hermansson-Truedsson, R. Hodgson and A. Jüttner, *et al.*

- For better |V_{us}| from meson semi-leptonic decay: a complete lattice calculation of QED correction to meson semi-leptonic decay is more difficult than leptonic decay, but should be feasible as well. Will be the next goal.
- For better |V_{us}| from meson (semi-)leptonic decay: improving the precision leading order decay constant and form factors are also important.

- For better $|V_{ud}|$ from pion leptonic decay: more accurate lattice determination of f_{π^+} and the QED correction to the process are needed.
- For better |V_{ud}| from neutron decay: more accurate g_A is needed. Currently experimental determination is more accurate. But the precision from lattice QCD is improving as well.

$K ightarrow \pi \pi$ and CP violation

- [PRD 102, 054509 (2020)] by the RBC-UKQCD collaborations. Chris Kelly (BNL).
- Final result $\text{Re}(\epsilon'/\epsilon) = 2.17(26)_{\text{stat}}(62)_{\text{sys}}(50)_{\text{isospin}} \times 10^{-3}$

Or, include the ChPT evaluation of the QED and strong isospin breaking effects: 1.67×10^{-3} . Recall the experimental value is $1.66(23) \times 10^{-3}$.

- Good agreement at this precision. RBC-UKQCD efforts to reduce the error:
 - Repeat the calculation with finer lattices.
 - Non-perturbative 3- to 4-flavor operator matching. Masaaki Tomii.
 M. Tomii, Proc. Sci., LATTICE2018 (2019) 216.
 - Periodic boundary condition $K \rightarrow \pi \pi$. Masaaki Tomii and Daniel Hoying.
- Developing method to study the QED and strong isospin breaking effects on the lattice
 - N. Christ and X. Feng, EPJ Web Conf. 175, 13016 (2018)
 - Y. Cai and Z. Davoudi, Proc. Sci., LATTICE2018 (2018) 280
- [PRD 98 (2018) 11, 114512] N. Ishizuka, K. I. Ishikawa, A. Ukawa and T. Yoshié Independent calculation with $m_{\pi} = 260$ MeV.

- [PRD 100 (2019) 11, 114506] by the RBC-UKQCD collaborations Xu Feng (Peking University).
- The golden modes: an ideal process in which to search for signs of new physics.

– NA62 at CERN: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ (aim at 10% accuracy)

- KOTO at J-PARC: $K_L \rightarrow \pi^0 \nu \bar{\nu}$ (long distance contributions negligible)
- The long distance $(\mathcal{O}(1/m_c))$ contribution is estimated to be about 5% to 10% in $\mathcal{K}^+ \to \pi^+ \nu \bar{\nu}$.
- Two pioneer lattice calculations @ $m_{\pi} = 430$ MeV and $m_{\pi} = 170$ MeV and lighter charm quark mass due to coarse lattice spacing.

- arXiv:2202.08795 [hep-lat], P. A. Boyle, F. Erben, J. M. Flynn, V. Gülpers, R. C. Hill, R. Hodgson, A. Jüttner, F. Ó. hÓgáin, A. Portelli and C. T. Sachrajda
- Similar to $K \to \pi \nu \bar{\nu}$:
 - NA62 at CERN: ${\cal K}^+ o \pi^+ \ell^+ \ell^-$
 - Prospective experiments planned at LHCb to study the: $K_S o \pi^0 \ell^+ \ell^-$
 - Lattice calculations @ $m_{\pi} = 139$ MeV, $a^{-1} = 1.73$ GeV!
 - Statistical error is currently pretty large: V(z = 0.013(2)) = -0.87(4.44). Mostly come from the stochastically estimated quark loops.

- [PoS LATTICE2019 (2020) 128, PoS LATTICE2019 (2020) 097] by the RBC-UKQCD collaborations
 Yidi Zhao (Columbia University), Norman Christ's graduate student)
- Branching fraction is accurately measured: $BR(K_L \rightarrow \mu^+ \mu^-) = 6.84 \pm 0.11) \times 10^{-9}$.
- Two mechanism of comparable sizes for the decay:
 - One-loop, second-order weak process, involving exchange of two weak bosons.

Rare kaon decays: $K \rightarrow \ell \nu \ell'^+ \ell'^-$

- Phys.Rev.D 105 (2022) 5, 054518, X. Y. Tuo, X. Feng, LJ, and T. Wang RBC-UKQCD
- Phys.Rev.D 105 (2022) 11, 114507, G. Gagliardi, V. Lubicz, G. Martinelli, F. Mazzetti, C. T. Sachrajda, F. Sanfilippo, S. Simula and N. Tantalo RM123
- Good test of the lattice calculation for the kaon form factors also needed for the QED corrections to the kaon leptonic decay (photon can be emitted from kaon).
- Techniques are developed to treat the four (non-interacting) particle final state.
- Unphysical pion mass $\sim 300~\text{MeV}$ is used in both calculations.
- Experimental results from the E865 experiment at BNL. hep-ex/0204006, hep-ex/0505001

Channel	RM123	Tuo et al.	ChPT	Experiment
$Br[K \to \mu \nu_{\mu} e^+ e^-]$	$8.26(13) 10^{-8}$	$10.59(33) 10^{-8}$	8.2510^{-8}	$7.93(33) 10^{-8}$
${ m Br}[K o e u_e\mu^+\mu^-]$	$0.762(49) 10^{-8}$	$0.72(5) 10^{-8}$	0.6210^{-8}	$1.72(45) 10^{-8}$
$Br[K \to e\nu_e e^+ e^-]$	$1.95(11) 10^{-8}$	$1.77(16) 10^{-8}$	$1.75 10^{-8}$	$2.91(23) 10^{-8}$
${ m Br}[K o \mu u_\mu\mu^+\mu^-]$	$1.178(35) 10^{-8}$	$1.45(6) 10^{-8}$	1.1010^{-8}	—
				P
				-

Thank You!