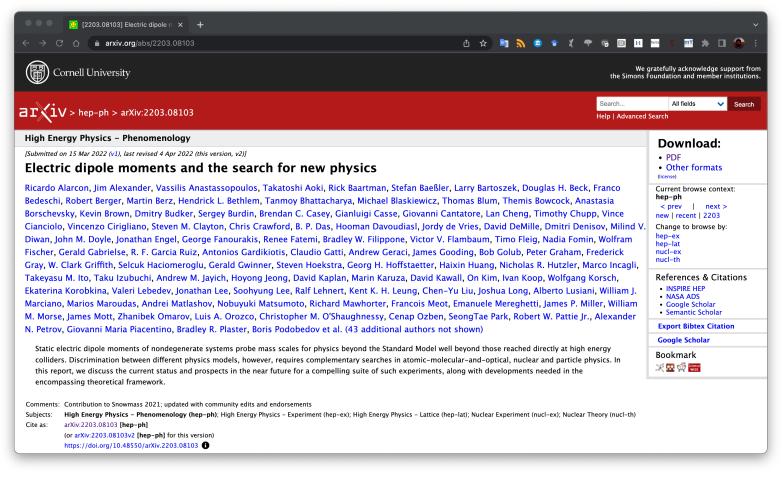


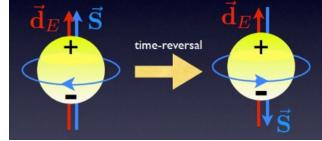
EDMs and the search for new physics


Tanmoy Bhattacharya Los Alamos National Laboratory

July 22, 2022

LA-UR-22-27105

Managed by Triad National Security, LLC, for the U.S. Department of Energy's NNSA.


The Whitepaper

Why EDMs?

- CP violation in excess of Standard Model contribution must exist.
 - Too much matter in the universe.
 - Can't be present initially.
 - SM CP-violation too small to create it.
- If BSM CP-violation couples to the baryonic or charged leptonic sector
 - Typically gives rise to EDMs,
 - Much larger than the tiny SM contribution.
- Observation of EDMs starting point for investigation into
 - Nature of CP-violation,
 - Whether spontaneous or explicit.
- Opportunity for rapid improvement in the next decade.

Effective Field Theory

Use the framework of EFT:

- Assume a single large energy scale of new physics
 - Use (naïve) dimensional analysis to make things dimensionless
- Like Taylor series in theory space
 - Drop high-order terms because they are small
- Use symmetries of the problem
 - Assume all terms allowed by symmetry are "equally" big
 - Can incorporate soft symmetry-breaking through spurions
- Assume all remaining dimensionless constants O(1)

Low energy description

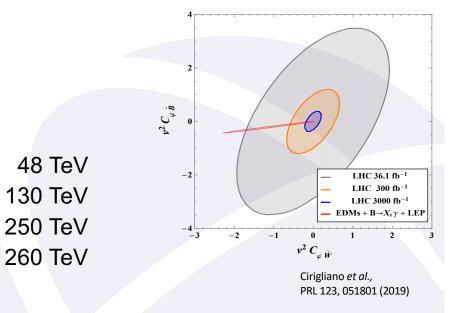
- At low energies, EDMs primarily arise from:
 - EDMs of elementary particles
 - Electrons (and neutrinos)
 - Neutrons
 - Protons
 - CP-violation in electron-nucleus interactions
 - CP-violation in pion-nucleon interactions
- Above the hadronic scale, these come from:
 - QCD topological term
 - EDMs of quarks and electrons
 - Chromo-EDMs of quarks and gluons
 - Four-fermi interactions (not all equal: organized by the broken weak symmetry)

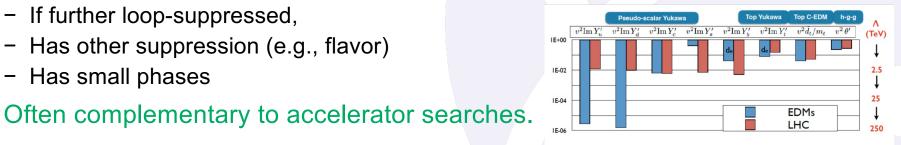
Probes high scales

- Arise at a very high scale if at one-loop
 - Flectron FDM 10⁻²⁹ e cm

One order of magnitude lower reach

- Has other suppression (e.g., flavor)


- Quark EDM
- Quark cEDM
- Gluon cEDM


- Has small phases

- If further loop-suppressed,

10⁻²⁹ cm 10⁻²⁹ cm/100 MeV

10⁻²⁹ e cm

Pseudo-scalar Yukawas in units of SM Yukawa ma/v

6

Cirigliano <i>et al.,</i> PRD 94 (2016) 016002	$\mathcal{L} = \frac{m_q}{v} \tilde{\kappa}_q \bar{q} i \gamma_5 q h$	$\tilde{\kappa}_u$	$\tilde{\kappa}_d$	$\tilde{\kappa}_s$	$\tilde{\kappa}_c$	$\tilde{\kappa}_b$	$\tilde{\kappa}_t$	
		0.45	0.11	58	2.3	3.6	0.01	
						7/20/2		20/2

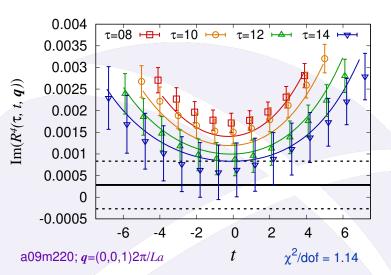
•

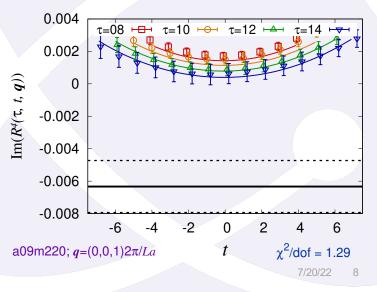
Needs combination of theory and experiments

- Most coefficients very poorly known
- Lattice calculations provide precision
- Currently available for
 - u and d Quark EDM contribution to nucleon EDM
 - Semileptonic 4-fermion (u and d with lepton) contribution to electron-nucleon coupling

 $\begin{aligned} d_n &= -(0.0015 \pm 0.0007) \ e \ \vartheta \ \text{fm} \\ &-(0.20 \pm 0.01)d_u + (0.78 \pm 0.03)d_d + (0.0027 \pm 0.016)d_s \\ &-(0.55 \pm 0.28)e \tilde{d}_u - (1.1 \pm 0.55)e \tilde{d}_d \pm (50 \pm 40)e \ w \ \text{MeV} \end{aligned}$

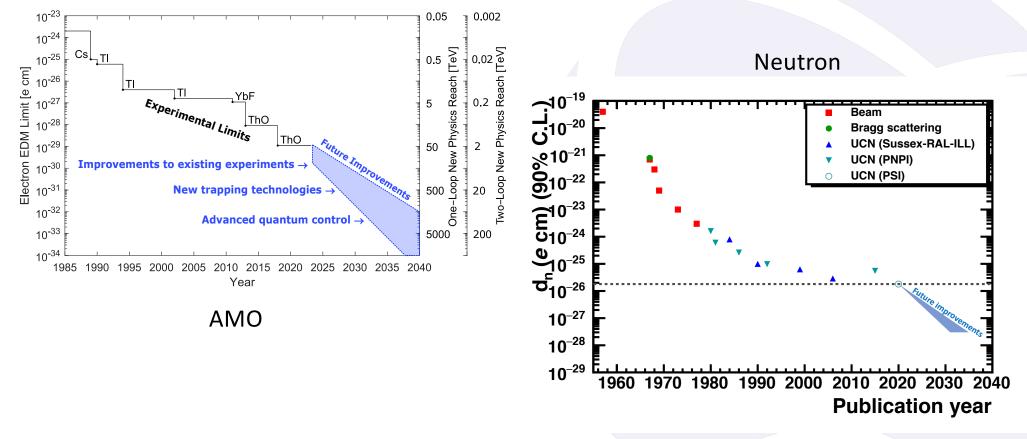
$$\bar{g}_0 = (5 \pm 10) \left(\tilde{d}_u + \tilde{d}_d \right) \, \mathrm{fm}^{-1}$$


Green indicates lattice results


$$\bar{g}_1 = (24^{+40}_{-10}) \left(\tilde{d}_u - \tilde{d}_d \right) \, \mathrm{fm}^{-1}$$

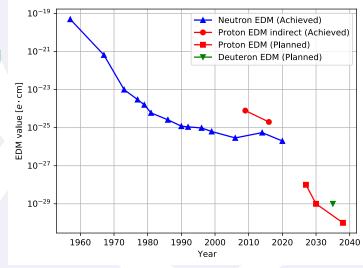
Lattice calculations

- Lattice calculations provide precision
- Have to control systematics: finite spacing, volume, unphysical parameters, matching, ...
- Plagued by systematic effects peculiar to baryons
 - CP violation often sensitive to low-lying pion excitations
 - Local nucleon sources also couple to Nπ states
 - Difficult to isolate for light pion masses
 - Seen to be important in many places
- Expensive calculations needed to control these.
 - May need innovative solutions
- Chiral perturbation theory can provide guidance.



Need multiple systems

- More than one low-energy CPV quantity: d_n, d_p, g₀, g₁, d_e, C_S, C_P, C_T, …
- Need EDM of more than one system
 - Neutron EDM: d_n
 - Proton EDM: d_p
 - Nuclear/Diamagnetic atoms/molecules EDM (¹⁹⁹Hg, ¹²⁹Xe, ²²⁵Ra): d_n, d_p, g₀, g₁
 - Paramagnetic atoms and molecules (ThO, HfF⁺) EDM: d_e, C_S, C_P, C_T, ...
- Currently
 - n and Hg most constraining (assuming single term) for d_n , d_p , g_0
 - TIF best for g₁
 - Molecules, in general, can have large internal fields (but, Schiff's theorem)
- Interest and expertise among the HEP, NP, and AMO communities; as well as in quantum sensing and other disciplines.



LOS Alamos

Opportunity: Storage Rings

- Useful for charged particles.
 - Highly polarized and along beam axis
 - At magic momentum (in-plane precession frozen)
- Early systems: p, ²H, ³He (and μ)
 - Can reach $d_p < 10^{-29}$ e cm in five years of data taking
- Also sensitive to dark matter

Snowmass

- EDMs one of the best short-term insight into BSM theories
- Needs multiple systems and interdisciplinary science
 - Input from nuclear and AMO physics needed
 - Needs synergistic experimental and theory progress
 - Needs various theoretical advances
 - Effective field theories to see correlations in particular BSM models
 - Chiral perturbation theory to organize low-energy observations
 - AMO and Nuclear structure calculations
 - Lattice QCD to handle string interactions
- Proton storage ring a window of opportunity

