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DEEP UNDERGROUND
m— NEUTRINO EXPERIMENT

Sanford Underground
Research Facility

Fermilab

* Next-generation international neutrino & underground science experiment
hosted in the United States (37 countries + CERN)

* High intensity neutrino beam, near detector complex at Fermilab
* Large, deep underground LArTPC far detectors at SURF

* Precision neutrino oscillation measurements, MeV-scale neutrino physics,
broad program of physics searches beyond the Standard Model
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DUNE 2.4 MW upgrade

* DUNE is designed to

resolve degeneracies by
measuring flavor
transitions as a function of
energy over more than a
full oscillation period

Determine the mass
ordering, measure Ocp, 0,5,

and 0, regardless of the
true values

Precise measurements of
subtle effects — very high
statistics are required
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Direct detection in DUNE:
Dark matter at DUNE ND & FD
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Light DM produced in the

beamline, measured in ND —
signal is proportional to beam

intensity

DM of cosmic origin,
measured in FD - signal
independent of beam intensity
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Physics potential: high-precision
neutrino oscillation measurements
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 7°resolution to 0.p, discovery sensitivity to CPV over a broad range of values

* Note the exposure required for ultimate sensitivity is > 1000 kt-MW-yrs
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Physics potential: precision
measurements non unltarlty tests
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e Excellent on Am2,, and 0,,, including octant, and unique

PRISM measurement technique that is less sensitive to
systematic effects

e Ultimate reach does not depend on external 0,; measurements,
and comparison with reactor data directly tests PMINS unitarity

UNIVERSITY of Pl 14 )
A/

6 DUNE 2.4 MW upgrade ul ROCI—IESTER




Getting there: phased construction

* DUNE was always envisioned to
use a phased construction

e DUNE Phase I:

* Neutrino beam with 1.2 MW intensity

e Two 17kt LAr TPC FD modules, but
underground facilities and cryogenic
infrastructure to support four modules

e Near detector;: ND-LAr + TMS
(movable) + SAND

* The US DOE scope of Phase I was
reviewed last week in CD1-RR
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Getting there: Phase Il upgrades

e« DUNE Phase II: Phase IIND .

* Fermilab proton beam upgrade to 2.4
MW

e Two additional 17kt FD modules

e Near detector: ND-LAr + MCND
(movable) + SAND

* ND upgrade is driven by improved
performance at reducing systematics,
has nothing to do with beam intensity

* What DUNE needs is basically twice
as many neutrinos, and the details don’t
really matter (with one exception)
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Why DUNE needs 2.4 MW: math

— 40 kt, 2.4 MW
— 40 kt, 1.2 MW
— 20 kt, 1.2 MW

11 1 'l 1 1 I 11 1 I 1 11
% 2 4 6 8 10 12 14 16 18 20
Years
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* Precision physics of

DUNE requires O(1000)
kt-MW-yr beam exposure

e We want to achieve this

in ~1 decade

* 46 years in Phase I

* 23 years with 40 kt but
still 1.2 MW

* 11.5 years with 40 kt
and 2.4 MW
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Precision physics requires 2.4 MW

upgrade, and 40 kt FD
fiducial mass, we
accumulate statistics 4x
faster than in Phase 1

e This allows DUNE to reach
its precision physics goals,
such as 50 CPV for 50% of
dcp values, on a reasonable

Years timescale

y: e With the 2.4 MW beam
- . Phase ll

Phase lI: no beam upgrade
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Many beam-induced BSM searches
also benefit from 2.4 MW

i * Many BSM searches at the
ND will benefit from the
beam upgrade:

e Neutrino tridents

v tridents

oo "’ * Milicharged particles

* Heavy neutral leptons
* Light dark matter

e Anomalous v, appearance

Type 1 \“\,\H ® etC.
' HNL decays :

0.01 0.05 0.1 0.5 1 2
Mass (GeV)
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One other consideration: timing
structure

* ND-LAr observes activity from ~50 neutrino

interactions per 1.2 MW beam spill (7.5E13
POT)

* The charge readout is ~300 ps, so there is no
timing resolution within the 10 ps beam spill

* The light readout is expected to have O(few ns)
timing resolution, and can separate optical
signals

(,E.mw it ? * DUNE ND-LAr is assuming that the 2.4 MW
; beam will just be twice as many protons with
the same 10 ps spill

Secondary Energy Deposit [MeV]

* The substructure doesn’t really matter

' | 4 Unless the spill length is >>300 ps, the only
UL IRV L) thing that matters for ND-LAr is the total
0 1000 2000 3000 4000 35000 €000 7OOQO 8000 Sg%ﬂe [TngiJOO number Of protons per Spill
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Conclusions

* The 2.4 MW upgrade is critical for DUNE to achieve
its precision long-baseline neutrino oscillation physics
goals, and benefits many BSM searches
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Thank you

DUNE Collaboration, May 2022, Fermilab
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