Overview: Neutrino Experimental Anomalies (NF02)

July 21, 2022

Georgia Karagiorgi Columbia University

Bryce Littlejohn

Illinois Institute of Technology

Pedro Machado Fermilab

Alex Sousa University of Cincinnati

Standard Model Neutrino Oscillations

- Have a beautiful picture of three oscillating Standard Model neutrinos coming into focus
 - Three mass differences define the relative weights of the different neutrinos
 - Also defines the travel distance required for flavor change to occur
 - Three angles define which flavors are in each mass state
 - Also defines magnitude of flavor changing

Sampling Neutrino Flavors

- We got here by sampling neutrino flavors.
 - Want to make sure I <u>taste</u> the flavor that was produced: stout, amber, pilsner?
- For neutrinos, charged current interactions enable this
 - Want to make sure I detect the flavor that was produced: e, μ , or τ ?

Sampling Neutrino Flavors

Many detector technologies can help us taste that flavor:

MicroBooNE: a liquid argon TPC in a ν_{μ} beamline

Neutrino Oscillations: L and E

 Have a beautiful picture of three oscillating Standard Model neutrinos coming into focus

Took many experiments to

get us here!

Energies (E): MeV to GeV++!

Example: KamLAND

Neutrino Oscillations: L and E

 Have a beautiful picture of three oscillating Standard Model neutrinos coming into focus

Took many experiments to

get us here!

Neutrino Anomalies

- Neutrino fluxes and energies measured at < km disagree with state-of-the-art neutrino predictions
- Indications of something odd beyond 'SM oscillation'?!

Reactor and Gallium Anomalies

- Deficits in neutrino detection rates at electron-flavor sources
- Sources host only lower (MeV-scale) energy scale processes

MiniBooNE and LSND Anomalies

- Excesses of electron-like events in ~muon-flavor sources
- Sources host some higher (GeV-scale) energy scale processes

New Neutrino Mass States?

- Neutrino fluxes and energies measured at < km disagree with state-of-the-art neutrino predictions
- Indications of new physics beyond 'SM oscillations'?(!)
 - New flavor transformations (like sterile osc)? New dark sector interactions?

New Neutrino Mass States?

- Other good reasons to look for new mass states, too
 - Dark matter: could heavy neutral leptons be a viable candidate?
 - See-saw mechanism: heavier neutral leptons help explain why SM neutrinos are so light?

``Ultralight" DM

non-thermal bosonic fields

``Light" DM

dark sectors sterile v can be thermal

WIMP

Composite DM (Q-balls, nuggets, etc)

Primordial black holes

Outline For This Session

- In the Neutrino Frontier, we are excited about these anomalies!
- Our plan for this session:
 - 2 talks summarizing what we've learned about anomalies in the last P5 period
 - I talk recent describing developments in theory/pheno views of the anomalies
 - A panel discussion aimed at what the next P5 period holds for the sub-field

10:15 AM	Experimental Status: Atmospheric/Accelerator DIF and DAR ¶ Speaker: Mark Ross-Lonergan	③ 15m
10:30 AM	Experimental Status: Radioactive Sources and Reactors over the Past 10 Years Speaker: Pranava Teja Surukuchi (Yale University)	③ 15m
10:45 AM	Recent Theory Progress and Interpretation(s) Speaker: Matheus Hostert (Perimeter Institute)	③20m
11:05 AM	Panel: Path to Resolution through Neutrino Experiments and Beyond	○ 55m