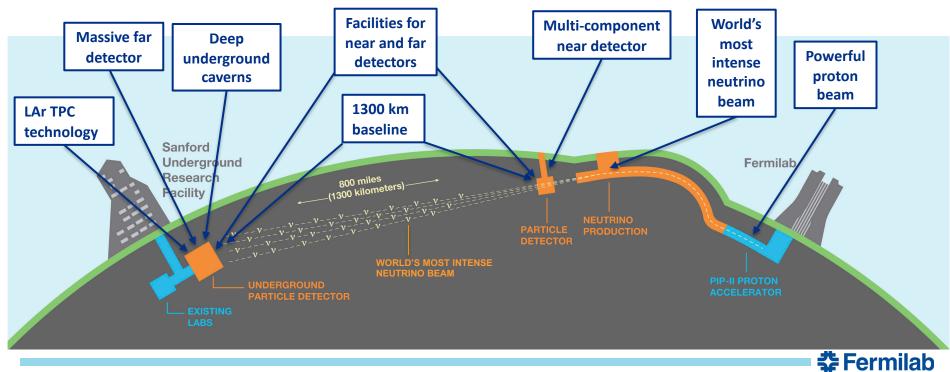
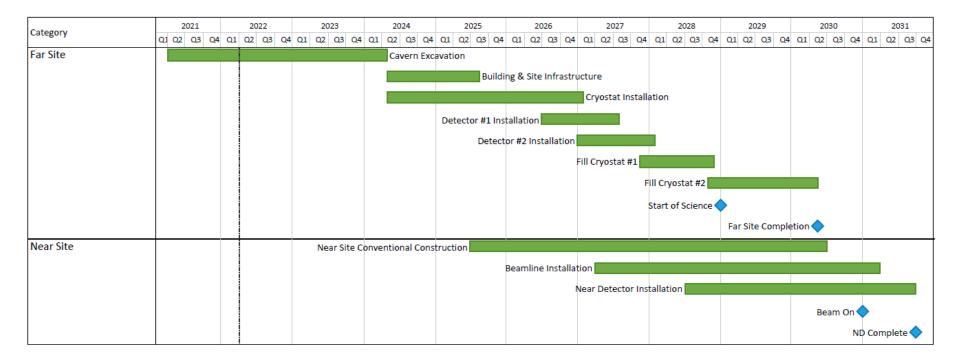
Fermilab Science

Large Experiments/Facilities and the proposed timelines – Neutrino Frontier


Steve Brice, Fermilab Snowmass Summer Study 26 July 2022

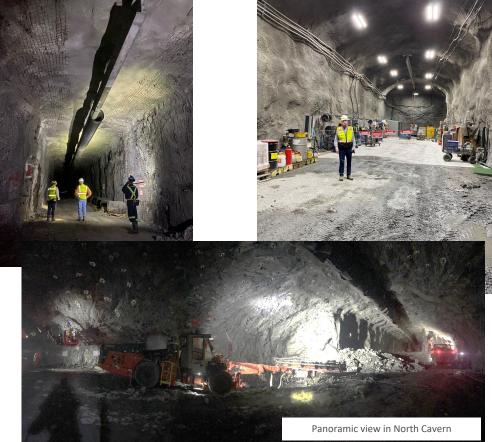
LBNF/DUNE


- Unambiguous, high precision measurements of Δm^2_{32} , δ_{CP} , $sin^2\theta_{23}$, $sin^22\theta_{13}$ in a single experiment
- Discovery sensitivity to CP violation, mass ordering, θ_{23} octant over a wide range of parameter values

7/26/22

- · Sensitivity to MeV-scale neutrinos, such as from a galactic supernova burst
- Low backgrounds for sensitivity to BSM physics including baryon number violation

LBNF/DUNE Status and Timeline



LBNF & PIP-II Progress

Installing and protecting South Cavern monorail

Permanent lighting installed in Maintenance Cavern

Fermilab 7/26/22

Total Excavated Rock 35% as of 19 Jul 2022

LBNF/DUNE Phases I and II

From the 2014 P5 Report

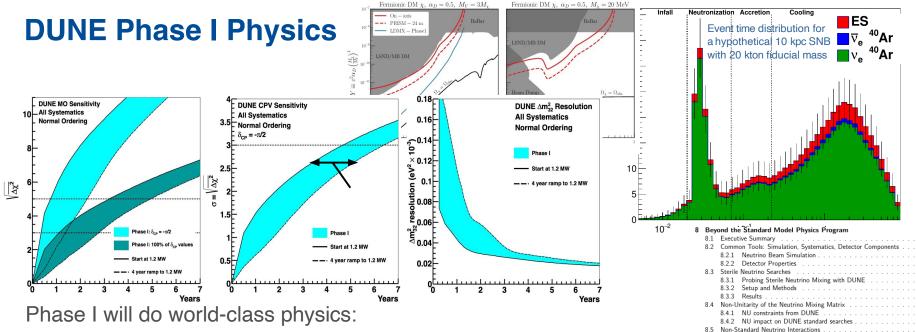
Recommendation 12: In collaboration with international partners, develop a coherent short- and long-baseline neutrino program hosted at Fermilab.

For a long-baseline oscillation experiment, based on the science Drivers and what is practically achievable in a major step forward, we set as the goal a mean sensitivity to CP violation² of better than 3σ (corresponding to 99.8% confidence level for a detected signal) over more than 75% of the range of possible values of the unknown CP-violating phase δ_{CP} . By current estimates, this goal corresponds to an exposure of 600 kt*MW*yr assuming systematic uncertainties of 1% and 5% for the signal and background, respectively. With a wideband neutrino beam produced by a proton beam with power of 1.2 MW, this exposure implies a far detector with fiducal mass of more than 40 kilotons (kt) of liquid argon (LAr) and a suitable near detector. The minimum requirements to proceed are the identified capability to reach an exposure of at least 120 kt*MW*yr by the 2035 timeframe, the far detector situated underground with cavern space for expansion to at least 40 kt LAr fiducial volume, and 1.2 MW beam power upgradable to multi-megawatt power. The experiment should have the demonstrated capability to search for supernova (SN) bursts and for proton decay, providing a significant improvement in discovery sensitivity over current searches for the proton lifetime.

Phase II (future):

- Increased mass at Far Detector
- More Capable Near Detector (MCND)
- Increased beam power by Booster replacement

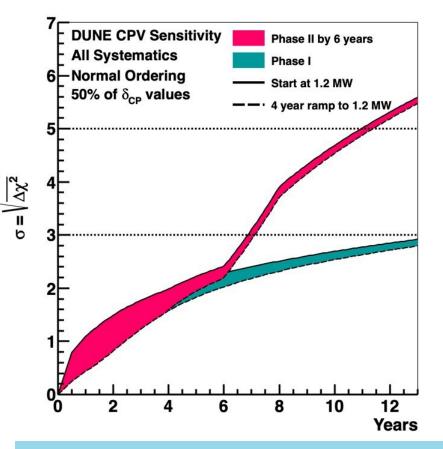
Phase I (current):


- Accomplished with PIP-II, LBNF/DUNE-US, and DUNE International Partners
- Meets P5 minimum requirements to proceed by 2035 timeframe
- Same project scope as proposed at CD-1R in July 2015

LBNF/DUNE-US Project + DUNE Int'l Project

Capability Description	Phase I	Phase II
Beamline		
1.2MW (includes 2.4MW infrastructure)	х	
2.4MW		X ¹
Far Detectors		
FD1 – 17 kton	Х	
FD2 – 17 kton	Х	
FD3		X ²
FD4		X ²
Near Detectors		
ND LAr	Х	
TMS	Х	
SAND	Х	
MCND (ND GAr)		х

Note 1: requires upgrades to LBNF neutrino target and upgrades to Fermilab accelerator complex. The LBNF facility is built to support 2.4MW in Phase I. **Note 2**: Caverns and cryo-infrastructure built in Phase 1

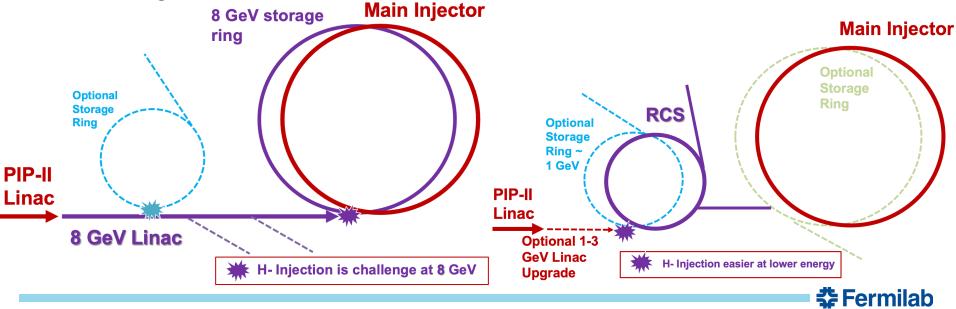


- Only experiment with 5σ mass ordering capability regardless of true parameters
- Discovery of CPV at 3σ if CP violation is large
- High precision disappearance parameters, (e.g. surpass current Δm²₃₂ error in ~2-3 years)
- DUNE is already very sensitive to a galactic supernova burst with Phase I
- DUNE is an excellent BSM physics experiment in Phase I
- Phase I Near Detector has world leading sensitivity to DM produced in beamline

	1			
3	Bey	yond the Standard Model Physics Program		
	8.1			
	8.2		on Tools: Simulation, Systematics, Detector Components	
			Neutrino Beam Simulation	
			Detector Properties	
	8.3	Sterile Neutrino Searches		
			Probing Sterile Neutrino Mixing with DUNE	
			Setup and Methods	
			Results	
	8.4		nitarity of the Neutrino Mixing Matrix	
			NU constraints from DUNE	
			NU impact on DUNE standard searches	
	8.5		andard Neutrino Interactions	
			NSI in propagation at DUNE	
			Effects of baseline and matter-density variation on NSI measurements .	
	8.6		vmmetry Violation	
			Imposter solutions	
	8.7	Search for Neutrino Tridents at the Near Detector		
		8.7.1 Sensitivity to new physics		
	8.8	Dark Matter Probes		
			Benchmark Dark Matter Models	
			Search for Low-Mass Dark Mater at the Near Detector	
			Elastic Boosted Dark Matter from the Sun	
			Discussion and Conclusions	
	8.9		3SM Physics Opportunities	
			Tau Neutrino Appearance	
			Large Extra-Dimensions	
			Heavy Neutral Leptons	
	0 10		sions and Outlook	
	0.10	Concius		
	_		7 Cormilab	

7/26/22

DUNE Phase II Physics



- DUNE needs full Phase II (FD3&4, 2,4MW, MCND) scope to achieve precision physics goals defined in P5 report.
- CPV sensitivity for 50% of δCP values shown
 - Precision measurements are similarly affected
- Timescale for precision physics is driven
 by achieving full scope on aggressive
 timescale, early ramp-up is not as relevant
- Many BSM searches at the Near Detector will benefit from the beam upgrade:
 - Neutrino tridents, Milicharged particles, Heavy neutral leptons, Light dark matter, Anomalous v_{τ} appearance etc.

2.4MW with the Booster Replacement

PIP-II provides a platform for an extended physics program and future facility upgrades. Booster replacement scenarios are developed informed by input from Snowmass/P5

- Cost-effective and fastest path to increased power to 2.4MW for LBNF in the 2030's
- Capture options for additional medium and small scale experiments
- Enable long-term vision

Takeaways

- DUNE Phase I should be realized in this decade
- Realization of the full DUNE Phase II should be the highest priority
 - Pursue upgrades aggressively such that the full DUNE scope is achieved in the 2030s
- R&D work to design detectors that broaden the physics scope while fulfilling the core goals of DUNE should be supported
- There are unique opportunities for NF to contribute to leadership of a cohesive, HEPwide strategic approach to DEI and community engagement, which is urgently needed.
 - As the flagship domestic experiment DUNE should be at the center of these efforts
- A healthy portfolio of small and midscale NF experiments is vital to the field and to the success of DUNE (C.F. SBN and DUNE)

