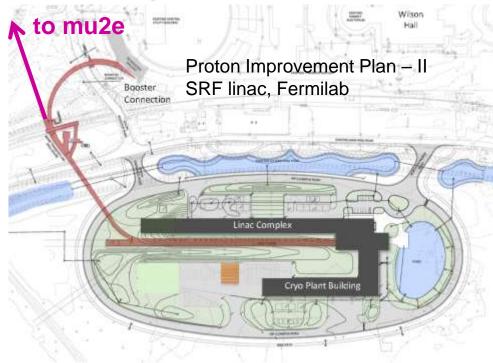


Accelerator Frontier Panel 4 Medium- and Small-scale Accelerator Facilities


Community Summer Study – Seattle, July 27 2022

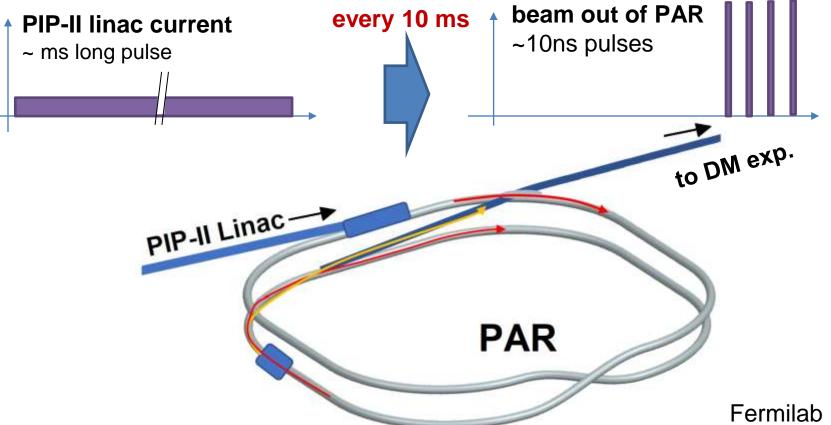
Stephen Gourlay, Tor Raubenheimer, and Vladimir Shiltsev

(Snowmass'21 AF Conveners)

Accelerators for Rare Process

We should efficiently utilize existing and upcoming facilities to explore dedicated or parasitic opportunities for rare process measurements - examples:

Existing SLAC SRF linac 4-8 GeV e- for LDMX **Upcoming PIPII SRF linac** 800 MeV protons Beam ops in 2028-29 162.5 MHz bunches upto $2mA \rightarrow 1.6$ MW possible ~17 kW for LBNF/DUNE v's (resulting in 1.2MW in MI)


The PIP-II scope enables the accelerator complex to reach design proton power on LBNF target, but still leaves 98.8% of the beam for other users!

PIP-II Possibilities

- RF or magnet beam switch(es) to send 800 MeV protons to various experiments:
 - For example: CLFV experiments, e.g., mu2e-II can utilize ~100kW of beam power if it comes in special format (81 MHz = ½ of 162.5 MHz bunches, very short, with 20 Hz rep rate... most mature)
- Or a dedicated PIP-II Accumulation Ring (PAR)
 - Transforms long, low current PIP-II linac pulse into few (4) short very intense bunches for one-by-one extraction:
 - Also can deliver ~100kW of avg beam power

PIP-II Accumulator Ring (PAR)

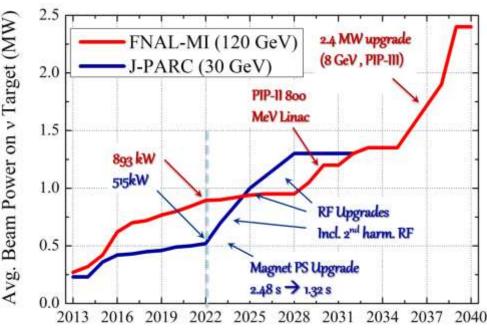
Features:

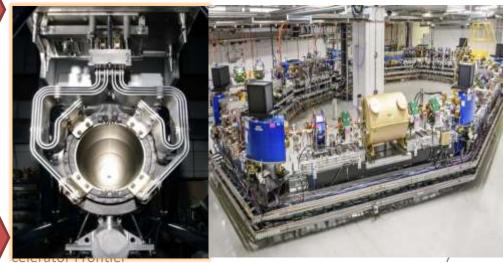
mass 202

- Fixed *E*=0.8-1.0 GeV proton storage ring
- C=480m in the form of a folded figure 8
- Power 100 kW for **Dark Sector** program, 100Hz
- There is also compact version C=120m, which
 Would better serve CLFV experiments

Medium- and Small-Scale Facilities

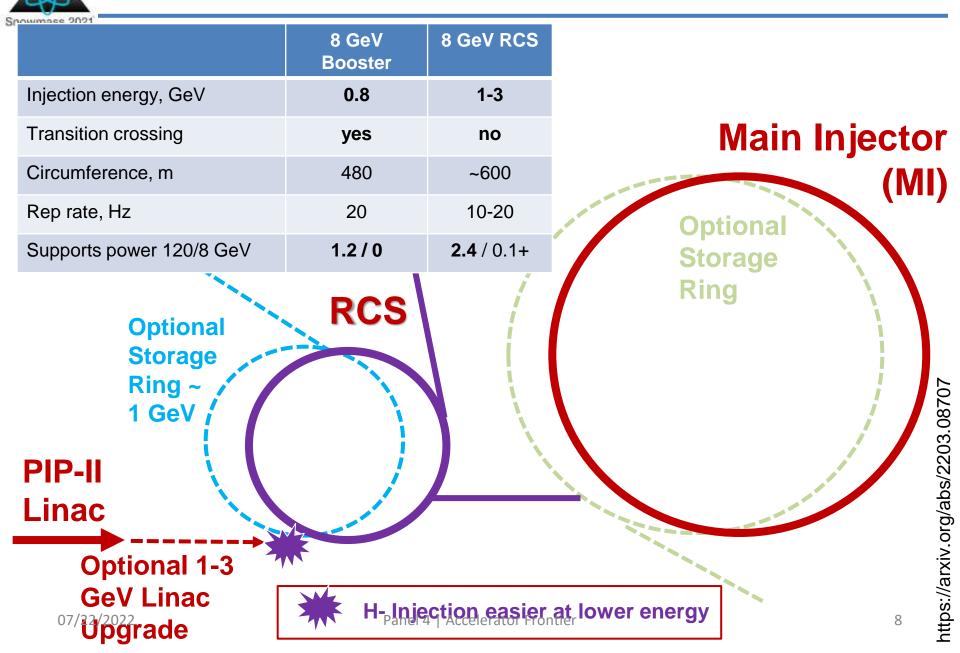
- #1: We have a broad array of accelerator technologies and expertise to design and construct prioritized medium- and small-scale HEP accelerator projects ("can start design now"). Expect P5 to tell us "what".
- #2: We support RPF aspirations to establish a program to fully utilize ~MW of 0.8 GeV proton beam power to be available after PIP-II construction.
- #3: The Booster replacement (part of the 2.4 MW LBNF/DUNE Phase II, late 2030's) – either RCS or SRF Linac – will offer additional opportunities (spigots) for the far future medium- & small-scale experiments. and such opportunities should be considered in its design

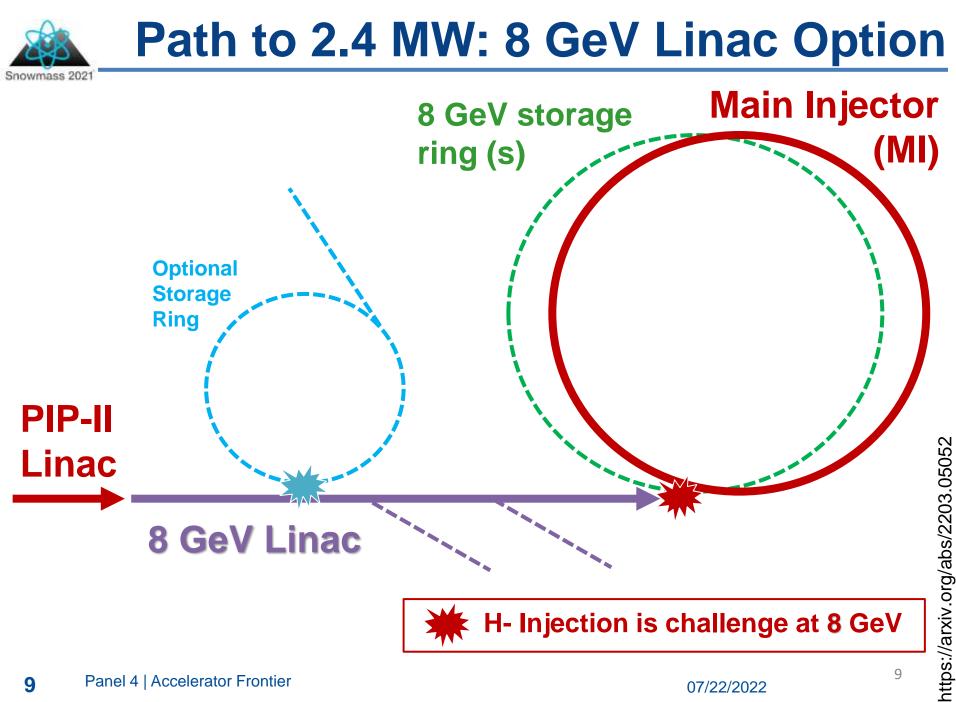



Back up slides

2.4 MW Upgrade: Challenges

- Competition with Hyper-K / J-PARC
- Short timeline, design Q:
 - Other spigots (μ2e-II, DM and RPF, MuCollider)
- Cost challenge
- The rest of the complex
 - Main Injector RF upgrade
 - 2.4 MW target R&D
- Performance risk (beam losses):
 - Instabilities
 - Injection, collimation
 - Space-charge effects
 IOTA-ring *p* R&D





NUMI horn 0.9MW

Space-charge dominated ring IOTA

2.4 MW: Rapid-Cycling Synchrotron (RCS) Option

H-Injection is challenge at 8 GeV

9

II: >20 Proposed Experiments For Rare Processes

Snowmass 2021

(most via Snowmass Whitepapers)

Searches for DM, axions, EDMs, CLFV experiments, muons, light mesons, beam

dump experiments...calls for corresponding beam facilities @FNAL,SLAC,Jlab,SNS

Experiment	Experiment type	Primary beam particle	Beam Energy [GeV]	Beam power [KW]	Beam time structure	Electron beams:
Proton Storage Förg: EDM and Awon Searches	Precision tests, Dark Matter	prokan	0.7 GeWit beam momentum	fell polarized protons per NI	Fill the ring every 1000s	~ GeV to multi-GeV
Physics with Muonium	Precision tests	proton (producing surface muons)	0.8 GeV	Tet3pm1 POT per second	CW	
Nucleon Bectromagnetic Form Factors from Lepton Scattering	Neutrino	electron or proton (producing muore)	0.85 GW to 2 GeV	1 nA to 10 microA for electrons, 10/7 to 10/6 per second for mucro	A continuous or pulsed structure (ideally with a duty factor of 1% or larger) should be sufficient	Proton beams:
Rare Decays of Light Mesons (REDTOP)	Precision tests	proton	1.8-2.2 GeV (Run I), 0.8- 0.92 (Run II), 1.7 (Run III)	0.03-0.05 (Run I), 200 (Runs II and III)	OV(slow extraction for Run I	FIOION Deams.
Ultra-cold Neutron Source for Fundamental Physics Experiments, Including Neutron-Anti-Neutron Oscillations	Precision tests	pration	08-2	1,000	quasi-continuous	
Q.FV with Nuon Decays	CLFV	proton	Not critical 0.8 to a lew GeV	100 or more	continuus beam on the timescale of the muon lifetime i.e. proton pulses separated by a microsecond or less. The more continuous the better	~2 GeV CW-capable beam
Mide I	(CLFV	proton	1 to 3	100	pulse width 10s of ns or botter separated by 200 to 2000 es. Filedate time structure and minimal pulse-to-pulse variation	·
Fixed Target Searches for new physics with O(1 GeV) Proton Bears Dump	Dark Sector, Neutrino	proton	88 to 15 GeV	100 or more	«O(1 micro s) pulse with for neutrino measurements, <o(30 m)="" pulse<br="">width for dark matter searches, 10% 5) or better daty factor.</o(30>	
FREMAIN Charged Lepton Flavor Violation	CLFV	proton	1-3 GeV	up to 2MW	Fire pulses at a rep rate of about 1 MHz	
Electron Mossing Momentum (LDMX)	DaikSector	electron	-3GW to -20GeV	O(1 electron per RF budiet at 53 MHz)	OVish	~2 GeV pulsed beam from
Bectroe Beam Dumps	DarkSector	electron	few GeV	10/(21) electrons on target over the opportment of numbers	Pulsed beam (dub) factor not specified)	storage ring ~1MW
Proton irradiation Facility	RID	protun	Energy is not very important	field protons in a few hours	Putjetiken (duly factor not specifiet)	
SEN	Netrio	proten	1	22	2042	
Mille	CLFV	protox		1	<10%-10] editobon	
Fixed Target Searches for new physics with O(10 GeV) Proton Beam Dump	Dark Sector, Neutrino	proton	i w	up to 115	Beam spills less than a fee microsec with separation between spills greater than 50 microsec	$\alpha(0, C_{\alpha})/\alpha(1) = \alpha + \alpha$
Muon beam dump	DarkSector	proton (producing- mucris)	3 GeV muone	3eH muons in total on target far the whole run	CW	~8 GeV pulsed beam ~1MW
Muon Collider RSD and Neutrino Factory	RMD	prolun	5-30GeV	le12 to le13 protore per bunch	10+50 Hz repitale and banch length 5-3 mi	
Muon Missing Monwritum	Dark Sector	proton (producing muons)	tew 10s of GeV	10/(10) muons per experimental runtime	Pulsedbeam (duly factor not specified)	
HighEnergyProton Fixed Target	DarkSector, Neutrino	proton	O(100 GeV)	tel2 POTA terebre ~20W	OV via resonant extraction. TF we could up the duty factor that woull discuss below $\langle 2 \rangle$	
Test-Beam Facility	RMD	proton	520, lower energies would also be beneficial	10 to 100 Rdz on the testing apparatus	Putrectbeans (duty factor not specified)	120 GeV Slow extraction or LBNF beam
TaiNetires	Natro	andan	3 101 - 10	1200 or higher	Mitme stuckre	LBINF beam

In many cases, existing or planned facilities can be and should be fully utilized!

Panel Charge

Panel discussion 4: [formerly panel 3] Frontiers: CF, NF, RPF, UF, EF, AF

Title: Mid and Small scale Experiments/Facilities and the proposed timelines

Abstract: Drawing on the proposed experiments and facilities as discussed in the panel on physics highlights from Frontiers, the presentation from each participating Frontier will cover the following topics:

- 1. Which physics goal(s) does the facility/experiment support
- 2. Elaborate on the timelines for R&D (machines and detectors [as applicable]), construction and data collection
- 3. Discuss machine and design challenges which have been solved and make the facility viable in the near future. [2025-2035]
- 4. Discuss machine and design challenges which still need to be solved and proposed timeline for the R&D. Would these be in the 2025-2035 frame, or are they severely technologically limited and remain as long term challenges to be embarked upon ie, 2035+?