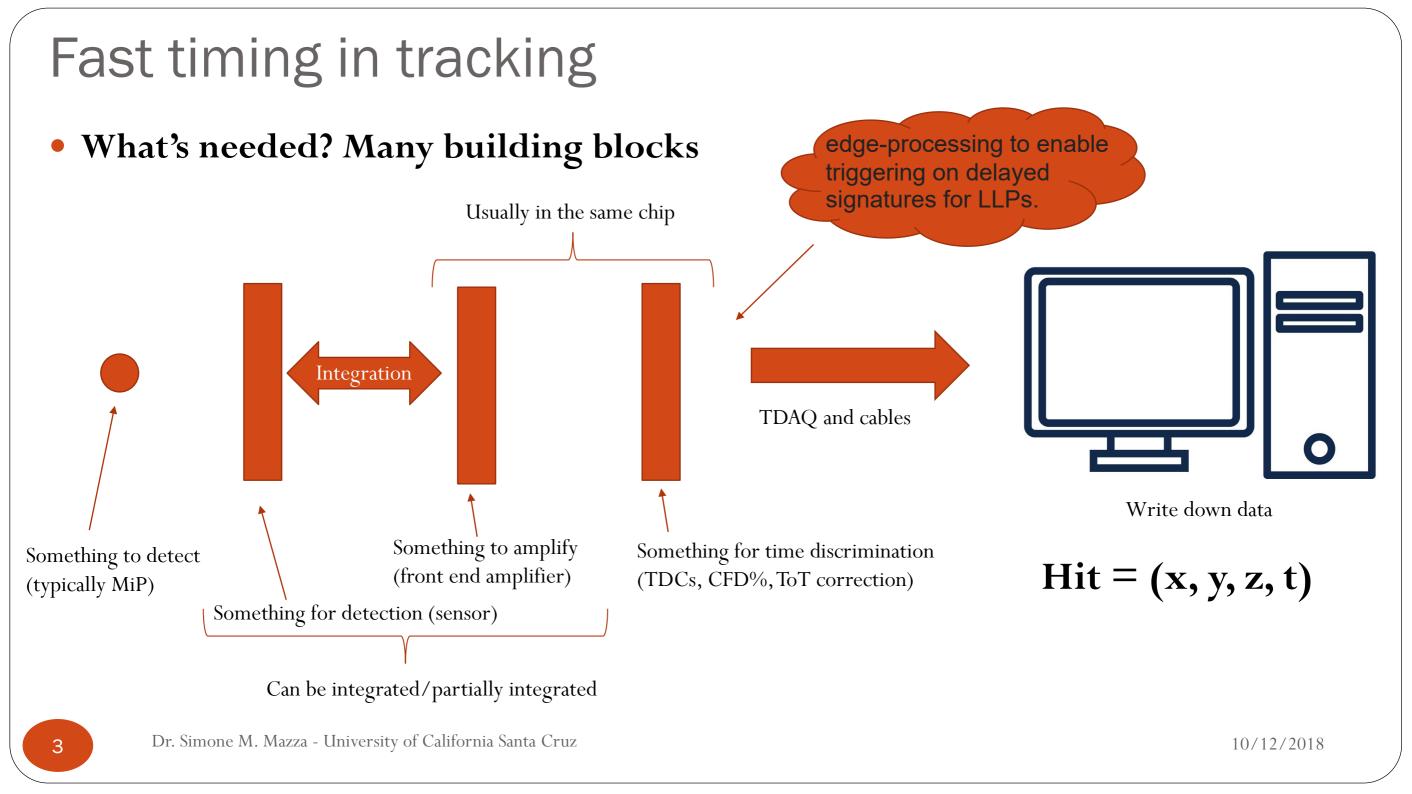
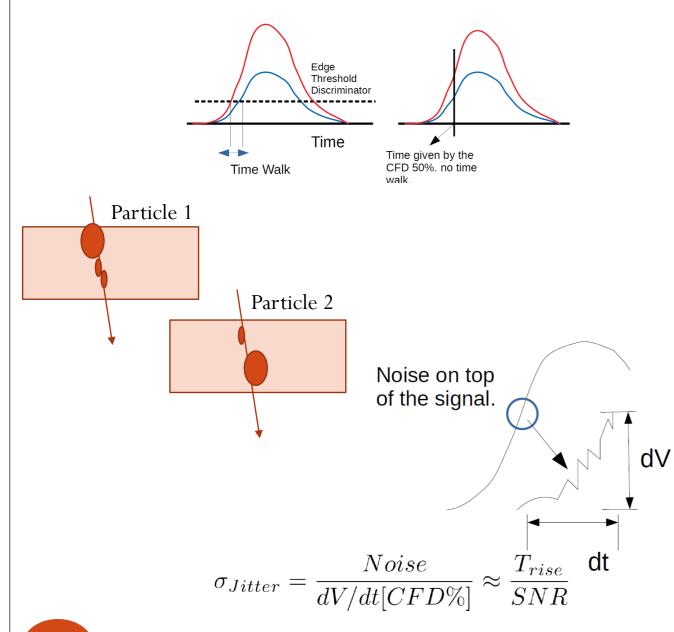

Technology developments for fast timing (Si trackers)

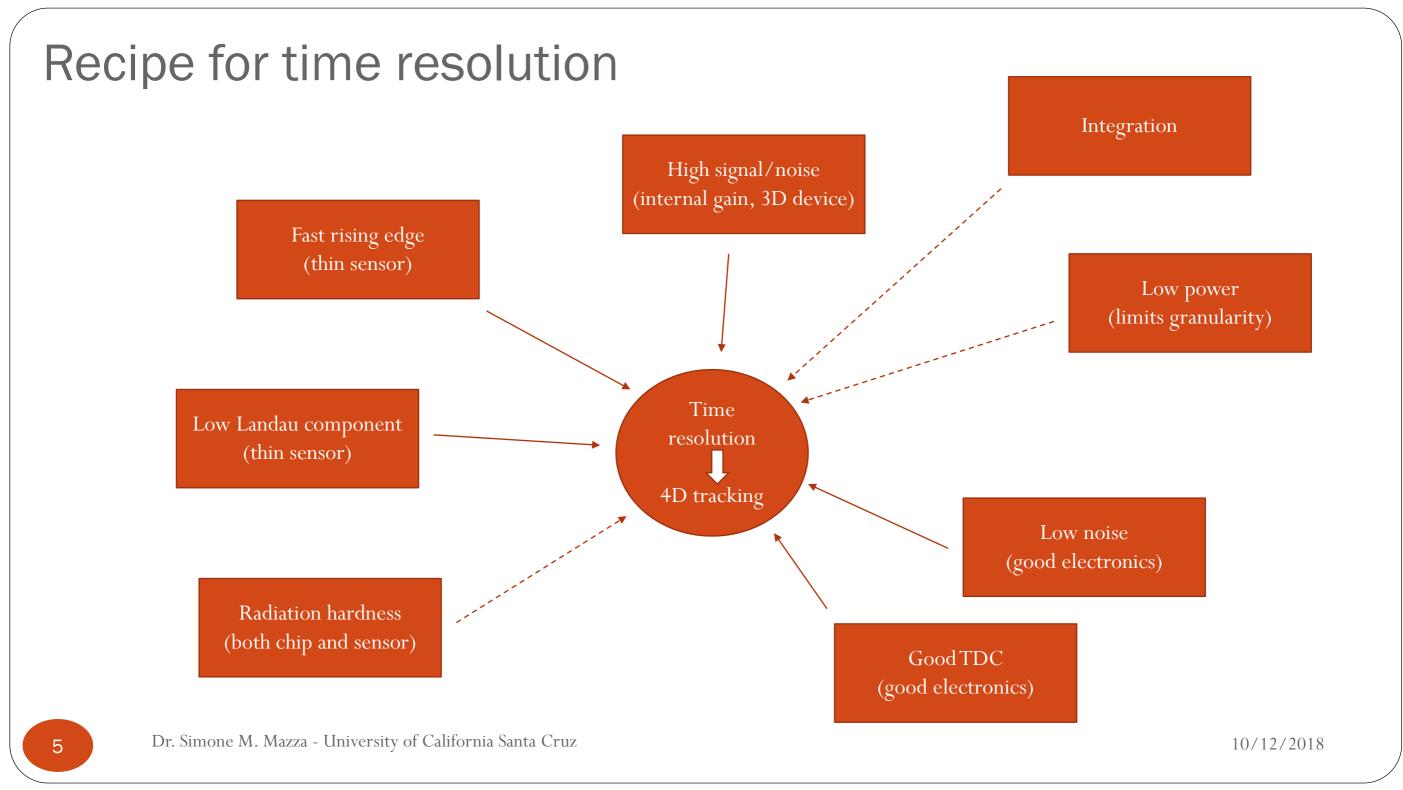
Dr. Simone M. Mazza (UCSC)


Cross Frontier session Snowmass community summer study

Fast timing in tracking


- Why fast timing? \rightarrow 4D tracking
 - Efficient tracking in dense environment
 - Pile-up suppression
 - Long Lived Particle detection
 - Appearing/Disappearing tracklets identification
 - ToF-based particle identification
 - Jet flavor tagging enhancement

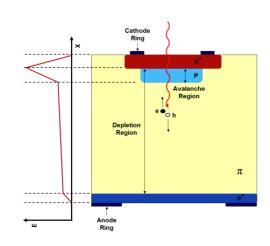
- What is needed for future colliders?
 - Depends on the application and environment
- High time and spatial precision
 - Time resolution **5-50 ps** per hit
 - Spatial resolution **5-25 um** per hit
- Very low material tracking
- For some applications radiation hardness is also important
- Coarse timing (ns) and high position precision (um)
- 5D tracking (incident angle measurement)
- Many more details in yesterday's session and many white papers
 - https://indico.fnal.gov/event/22303/sessions/20647/#20220719
 - <u>4D tracking paper, CMOS, Electronics, SiC, 3D integr.</u>


Time resolution components

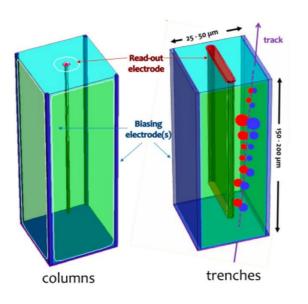
Time resolution main terms

 $\sigma^2_{timing} = \sigma^2_{time \; walk} + \sigma^2_{Landau \; noise} + \sigma^2_{Jitter} + \sigma^2_{TDC}$

- Time walk: pulse-by-pulse variation
 - Minimized with time of arrival correction
 - (e.g. Constant fraction discriminator: use 50% of the pulse as time)
- Landau term: proportional to thickness
 - Charge deposition dis-homogeneity
 - Reduced for thinner sensors
- Jitter: from electronics
 - Proportional to $\frac{1}{\frac{dV}{dt}}$
 - Reduced by increasing S/N ratio
- TDC term: from digitization clock (typically small, ~7ps for ATLAS/CMS chips)

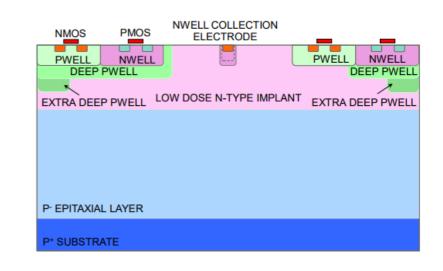


Sensors

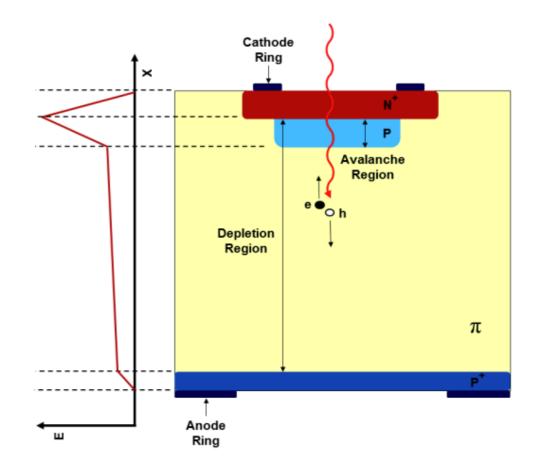

Time precision sensors

• Which technology has sufficient time resolution for 4D tracking?

- Most technologies introduced here: https://arxiv.org/abs/2203.13900
- Low Gain Avalanche Detectors (LGADs)
 - Intrinsic gain, thin bulk
 - High granularity LGADs
 - Innovative materials LGADs
 - Radiation hard LGADs

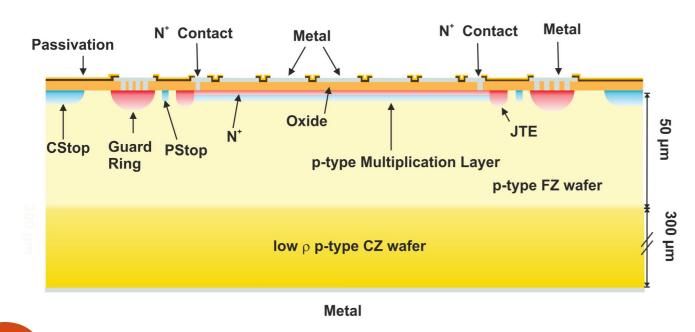


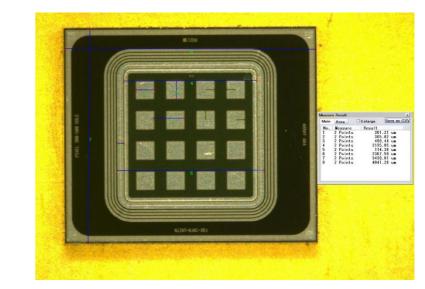
- 3D detectors
 - Very fast charge collection perpendicular to charge deposition
 - Electrodes optimization


• HV-CMOS

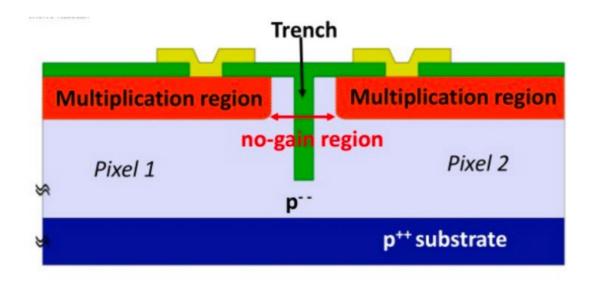
- Internal gain from integration
- Improved time resolution
- Small pixel detectors

Low Gain Avalanche Detectors

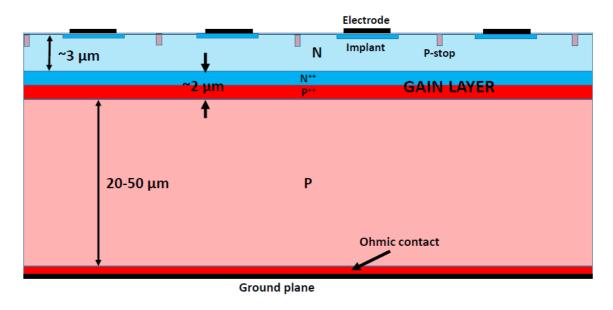

- LGAD: silicon detector with a thin (<5 μm) and highly doped (~10^{16} P++) multiplication layer
 - High electric field in the multiplication layer
 - Electron multiplication but not hole multiplication (not in avalanche mode, controlled gain)
- LGADs have intrinsic modest internal gain (10-50)
 - Gain = $\frac{Q_{LGAD}}{Q_{PiN}}$ (collected charge of LGAD vs same size PiN)
 - Better signal to noise ratio, sharp rise edge
- Better signal to noise ratio and thin detectors means improved timing resolution
 - Time resolution down to 20 ps
- Field protection structures currently limit granularity of LGADs
 - \sim 50-100 um inactive region between pixels
- But intensive R&D is ongoing to overcome this limitation


AC-LGADs

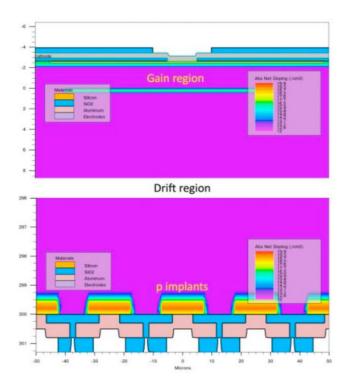
- Most advanced prototype of high granularity LGADs are AC-LGADs
 (UCSC US patent N. 9,613,993 B2, granted Apr. 4, 2017)
- Continuous sheets of multiplication layer and **N+ resistive layer**
 - N+ layer is grounded through side connections
- **Readout pads are AC-coupled** (Insulator layer between N+ and pads)
 - Allows for 100% fill factor and fine segmentation
- Intrinsic charge sharing between metal electrodes
 - Allows for precision hit precision better than $\sqrt{12}$
 - 5 um precision achievable for 500 um pitch


- The response of the sensors can be tuned by modifying several parameters
 - Pad distance
 - Resistivity of N+ layer
 - Oxide thickness
 - Pad geometry and dimension

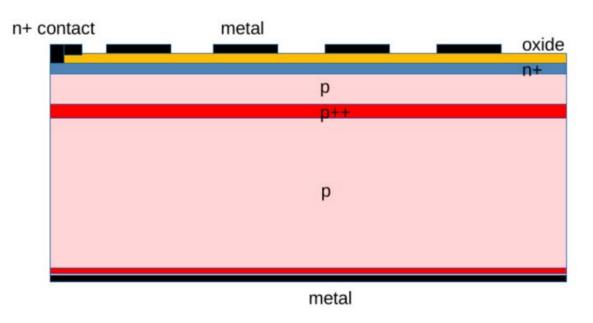
Prototype AC-LGAD from FBK, 500 um pitch, 300 um metal


Trench insulated LGADs (TI-LGAD)

- Traditional DC-LGAD with trench insulation between pads
 - Prototypes produced by FBK: https://indico.cern.ch/event/861104/contributions/4514658/
- Proven to have very low IP gap: 5-10 um
- Time resolution and gain in line with standard LGADs


Deep-Junction LGADs (DJ-LGAD)

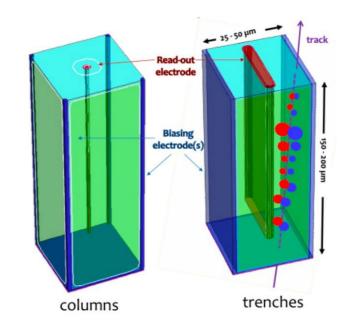
- P++ gain layer is paired with a N++ layer that lowers the field
 - Junction is buried \sim 5 um inside the detector
- Tuning of N+ and P+ parameters important
 - Low field outside of the electrodes while maintaining sufficient gain
 - No need for a JTE, standard silicon pixelization possible
- Effort ongoing to develop first DJ-LGAD demonstrator
 - First prototype ready soon!
- Additional efforts for HV-CMOS DJ-LGAD development
 - E.g. <u>https://arxiv.org/abs/2206.07952</u>


Double sided LGADs (DS-LGADs)

- Gain layer on the opposite side of the highly pixelated readout
 - On the gain layer side the readout is AC-coupled
- With thicker bulk 5D tracking is also possible

Buried LGADs

- P++ gain layer is buried ~5 um inside the detector bulk
- Increased radiation hardness with deep gain layer
 - Effect observed with not-so-deep gain layers already (~2.5 um) with many prototypes
- AC-coupled readout for high granularity

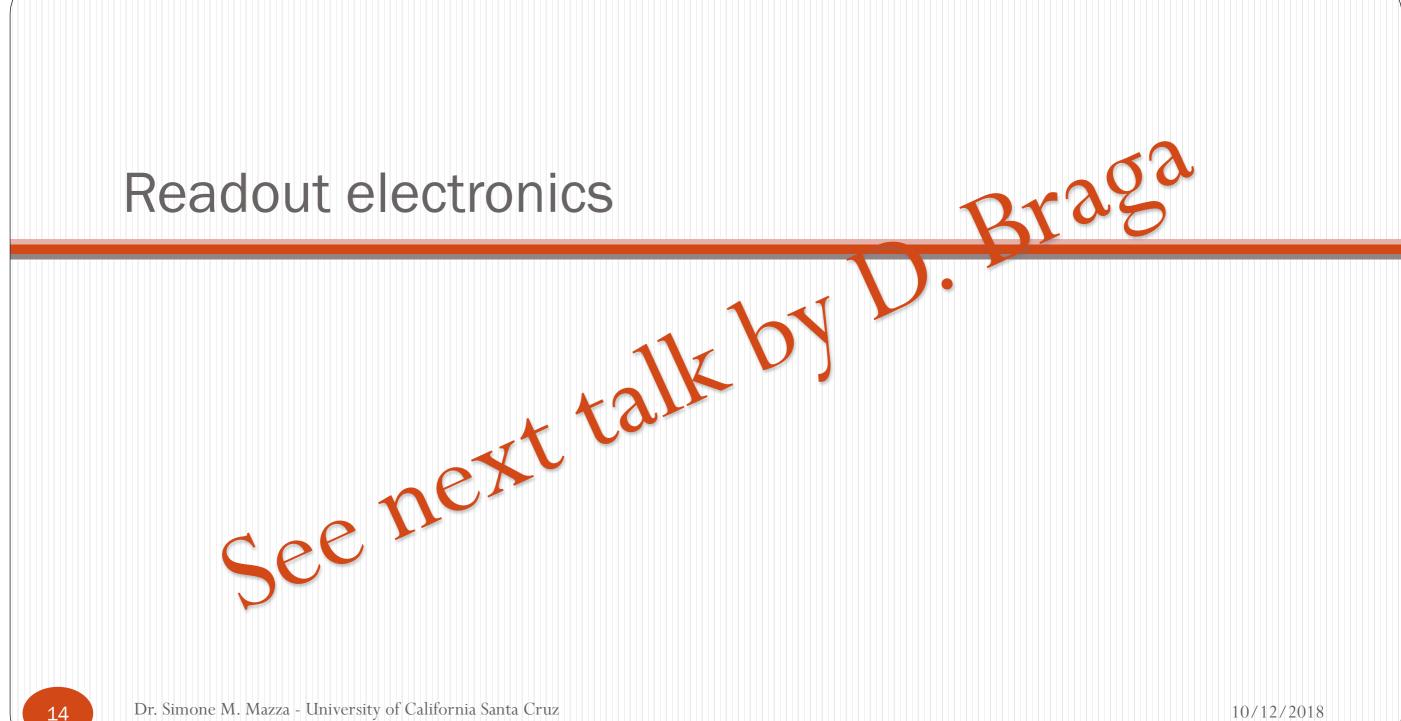

Silicon Carbide LGADs

- Promising material that can increase even further LGADs performance
 - Thanks to the increased band gap and electron velocity
 - <u>https://arxiv.org/abs/2203.08554</u>

	p++ gain layer n+			
(^μ	n epi ~50-70 um	Property	Silicon	4H-SiC
		Bandgap (eV)	1.12	3.27
	n+ substrate	Energy per ion pair (eV)	3.6	7.78
		Dielectric constant	11.7	9.7
		Breakdown field (MV cm ⁻¹)	0.3	3
		Density (g cm ⁻³)	2.3	3.2
		dE/dx minimum (MeV cm ⁻¹)	2.7	4.4
		Atomic number Z	14	~10
		Electron mobility (cm ² V ⁻¹ s ⁻¹) at 300K	1300	800-1000
		Hole mobility	460	115
		Saturated electron velocity (10 ⁷ cm s ⁻¹)	1	2
		Threshold displacement energy (eV)	13-20	22-35
		e-h pairs per micron	80	57
		Thickness for equivalent signal (µm)	1	1.57
		Thermal conductivity (W m ⁻¹ K ⁻¹)	130	370
		Radiation length	9.4	8.7
		Impact ionization coefficient	$\alpha_{e} > \alpha_{h}$	$\alpha_{e} < \alpha_{h}$

3D detectors

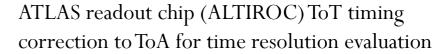
- MiP traveling parallel to electrodes allows for large charges deposition but with very fast charge collection
- Recent electrode optimization allows for homogeneous drift potential
- Time resolution down to 20ps

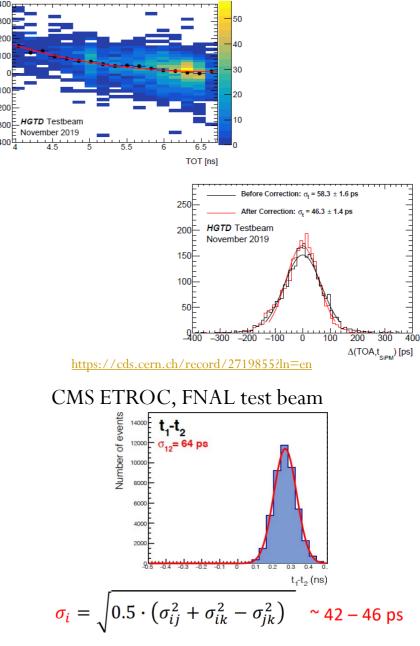

Monolithic

- State-of-the-art results from MALTA show < 2ns time resolution: suitable for ee colliders
 - <u>https://arxiv.org/abs/2203.07626</u>
- FASTPIX dedicated sensors optimizations achieve 120 ps resolution
- DMAPS CACTUS (150nm process, 1mm pixel pitch) <100ps resolution
 - <u>https://authors.library.caltech.edu/103788/1/2003.04102.pdf</u>
- SiGe BiCMOS SG13G2 (for ToF PET) <50ps resolution
 - <u>https://arxiv.org/pdf/2005.14161.pdf</u>

NMOS	PMOS	NWELL COLLECTION ELECTRODE	
PWELL DEEP PW	NWELL		PWELL NWELL DEEP PWELL
EXTRA DEEP P	10	W DOSE N-TYPE IMPLANT	EXTRA DEEP PWELL
P ⁻ EPITAXIAL L	AYER		
P ⁺ SUBSTRATE			

Small pixel detector

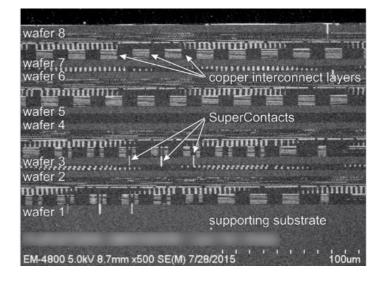

- Same sensor as a traditional silicon detector but utilizes small pixel pitch and 3D
 - integration (3DIC) techniques to create a lowcapacitance pixel unit cell and readout chain
- Allows the detection of the induced current at the readout electrode
- Very fast rising edge (15ps) and angle of incidence information



ROC (Read Out Chip) challenge

- Readout electronics has to maintain the time resolution of the sensor
- Simple ToA (Time of Arrival) method for timing not sufficient (time walk uncertainty)
- Time needs to be corrected in some way:
 - Using ToT correction (Time over Threshold) which measures the length of the pulse, current method used by ATLAS and CMS electronics
 - Using a variable threshold (eg: at 50% of the Pmax) \rightarrow (CFD) Constant Fraction Discriminator
 - Etc...?
- HL-LHC timing ASICs are a revolutionary step forward to bring O(ps) timing to collider experiments, but use significant more space and power than what is required for 4D trackers
 - Need R&D to minimize both power consumption and channel size
- Power consumption is and will be an issue for timing layers
 - Especially when the granularity is lower than ~1mm

ASIC	Technology	Pitch	Total size	Power consumption	TID tolerance
ALTIROC	130 nm	$1.3\mathrm{mm}$	$19.5 imes 19.5 \ \mathrm{mm^2}$	5 mW/chan	2 MGy
ETROC	65 nm	$1.3\mathrm{mm}$	$20.8 imes 20.8 ext{ mm}^2$	3 mW/chan	1 MGy
RD53A/HL-LHC pixels	65 nm	$50\mu{ m m}$	$20 imes 11.6 \ \mathrm{mm^2}$	$< 10 \ \mu W/chan$	515 MGy


Electronics R&D efforts

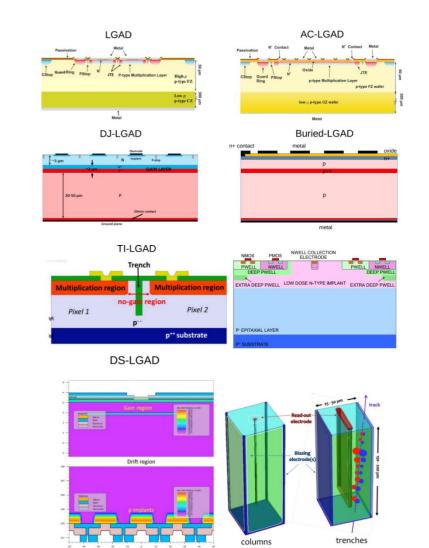
- See next talk by D. Braga
- Some current ongoing chip R&D projects:
 - **CERN** EP R&D WP5 has promoted the selection of **28nm CMOS** node as the next step in microelectronics for HEP designs. Twice as fast and allows 4-5x circuits densities than 65nm.
 - 22nm CMOS technology TDC design Global Foundries has been used by Fermilab extensively for cryoelectronics development for both Quantum control and readout electronics as well as cryogenic detectors (GF 22nm)
 - Fermilab is developing a chip based on the novel approach to time-stamping LGAD signals based on Constant Fraction Discriminator (CFD), v0 version of the chip tested showing 20 ps Jitter
 - SLAC has designed a TDC in 28nm with bin size of 6.25ps to minimize the TDC component of time resolution to <2ps. Fabrication expected this year
 - SiGe readout chip optimized for low power and 10ps resolution are being produced by Anadyne Inc. and UC Santa Cruz (TowerJazz 130nm)
 - Full waveform digitization chip UC Santa Cruz is working with Nalu Scientific on a waveform digitization ASIC for AC-LGAD sensor arrays (TSMC 65nm). First prototype being tested
- All efforts have the goal of producing a **reliable readout chip with high time resolution and low power**
 - Details: <u>https://arxiv.org/abs/2204.00149</u>

Integration

Advanced integration

- **3D integration** technology in industry currently allows tight packaging of sensor and chip
 - Improves sensor to chip connections in many ways
 - Additional aid to reach the goal of 4D tracking
 - https://arxiv.org/abs/2203.06093
- Not currently available in HEP, we need a community effort to make it available
 - Currently pursued by few groups together with small companies through DoE SBIRs
- Very fine pitch bonding (down to $\sim 3 \ \mu m$)
- Better connection:
 - Connections are shorter and faster than in circuit boards with long traces
 - Shorter connections also have reduced dissipated power
- **Better performance**: reduced input capacitance and lower noise
- Integration of heterogeneous materials or different wafer technologies
- **Reduction of single layer thickness**, after integration all supports can be removed
- See white paper <u>https://arxiv.org/abs/2203.06093</u>

Conclusions


Applications and limits

- Different sensor designs feature unique advantages and weaknesses, the choice of technology must be tuned to the specific application
 - AC-LGADs have a very high fill factor and rely on charge sharing for hit reconstruction: high position resolution for a sparse readout in low occupancy environments. However, in a high occupancy environment this is an issue
 - DC-LGADs (TI-LGADs, DJ-LGADs ...) can tolerate a high occupancy environment, but introduce non-zero dead regions between adjacent channels
 - Double-sided LGADs have a higher hit precision and can detect the angle of the particle, however they have a thicker bulk (resulting in reduced time resolution) and require additional readout channels
 - With high radiation doses, Buried LGADs, thin LGADs or 3D sensors are more robust
 - 3D sensors are less affected by radiation damage, however the lower material budged introduced by LGADs make them a more suitable choice for low mass trackers
- High granularity readout chips with high timing resolution are limited by power consumption
- Any sensor technology that is not monolithic requires integration with the electronics readout
 - HV-CMOS are an integrated and cheaper solution
 - Advanced packaging can help

Conclusions

- High precision timing will be very important in the next generation of particle/nuclear/astroparticle physics detectors
- Several technologies are being developed to achieve high time/spatial resolution or radiation hardness
 - Many based on LGADs, but also CMOS and 3D detectors
 - Each application has specific needs that can be fulfilled choosing the right technology
- Many efforts ongoing for developing a high precision and low power readout chip
 - Introduction of advanced integration would also bring improved performance
- There's a very promising technology effort across several fields/groups to achieve 4D tracking

21-Jul-22

Thanks for the attention

