MPGDS:
RECENT ADVANCES, CURRENT R&D, AND THE EUROPEAN STRATEGY

- Klaus Dehmelt on behalf of all WP1 contributors
- Seattle Snowmass Summer Meeting 2022
- July 22, 2022
RECENT ADVANCES - MPGD

• Micro Pattern Gas Detectors → MPGD
 ◦ Motivation and goal for MPGD development → cost-effective, large-scale detectors with excellent position and timing resolution in high-rate applications
 ◦ Significant development time invested
 ▪ understanding optimal manufacturing techniques for MPGDs
 ▪ understanding their operation
 ▪ mitigation of undesirable effects, for instance discharges and ion backflow
 ◦ Culmination in formation of CERN-RD51 collaboration → 2008
 ◦ CERN PCB workshop → source of essential expertise in production, mitigation and correction of production issues, critical input for R&D
CURRENT R&D: THE SOURCE

- CERN-RD51 collaboration → technical collaboration, established in 2008
 - Comprises ~450 collaborators from 89 institutes from 31 countries
CURRENT R&D: THE SOURCE

- CERN-RD51 collaboration → technical collaboration, established in 2008
 - Comprises ~450 collaborators from 89 institutes from 31 countries
CURRENT R&D: THE SOURCE

- CERN-RD51 collaboration → technical collaboration, established in 2008
 - Comprises ~450 collaborators from 89 institutes from 31 countries
 - Well organized and managed
 - Driver for the coordinated efforts within the MPGD community
 - more techniques becoming available or affordable
 - new detection concepts are still being introduced
 - existing ones are being substantially improved
 - Seven Working Groups WG
 - Transversal to RD51 activities, covering all aspects of R&D
Current R&D: The Source

- Seven Working Groups (WG) transversal to RD51 activities, covering all aspects of R&D.
CURRENT R&D

- **Gas Electron Multiplier (GEM) + Micro-Mesh Gaseous Structure (Micromegas)** → well established MPGD devices
 - More to come → THGEM, μRWell, …
 - Finding applications in many fields
 - HEP, NP, Astrophysics, Medical applications, Homeland Security, Commercial applications, …
 - Tracking, particle identification, timing, photo-detectors
 - Triggered electronics development

- **Number of LOIs received** → illustration of ongoing developments and expansion of MPGD use
CURRENT R&D

- High-precision timing → the Micromegas PICOSEC concept
- Prototypes show excellent timing resolution $\sigma_t = O(20\text{ps})$ for MIPs, $\sigma_t = O(70\text{ps})$ for photons
- Few pads' prototypes → many pads' prototypes
CURRENT R&D

- High-precision timing → the Micromegas PICOSEC concept
- Prototypes show excellent timing resolution $\sigma_t = \mathcal{O}(20\text{ps})$ for MIPs, $\sigma_t = \mathcal{O}(70\text{ps})$ for photons
- Few pads' prototypes → many pads' prototypes
CURRENT R&D

- Pixelated resistive Micromegas for high-rate environments
- Rate capability goal 10s MHz/cm^2 with stable and efficient operation
- Development toward large areas
- Diamond-like Carbon DLC resistive layer techniques
CURRENT R&D

- Pixelated resistive Micromegas for high-rate environments
- Rate capability goal: 10s MHz/cm² with stable and efficient operation
- Development toward large areas
- Diamond-like Carbon DLC resistive layer techniques
CURRENT R&D

- Scalable Readout System SRS established readout system
 - designed for scalability from desktop stems to rack-sized readout systems running under the same Online DAQ and Control system
- Extended SRS-e paradigm adds real-time trigger functionality, deep trigger pipelines and generalized frontend link
CURRENT R&D

- Scalable Readout System (SRS): established readout system designed for scalability from desktop stems to rack-sized readout systems running under the same Online DAQ and Control system.

- Extended SRS (SRS-e) paradigm adds real-time trigger functionality, deep trigger pipelines, and generalized frontend link.

![Diagram](image)
CURRENT R&D

- Scalable Readout System SRS established readout system
 - designed for scalability from desktop stems to rack-sized readout systems running under the same Online DAQ and Control system
- Extended SRS-e paradigm adds real-time trigger functionality, deep trigger pipelines and generalized frontend link
- Workplan developed

- Use existing frontends (VMM3a, SiPM adapter) as well-known frontend as baseline
- Establish a common user forum modelled after RD51 WG5.1 user group to identify priorities and agree on code exchange rules and practices
- With first eFEC prototypes, establish a basic set of uPython test procedures for eFEC sanity checks and register-level access to all connected resources via I2C, SPI and JTAG
- Establish a Linux-based control and monitoring environment on the embedded multicore system
- After initial production of 2 pilot eFECs, launch a first batch production
- Deploy first stand-alone eFEC readout systems with VMM in testbeam-like environment
- If required, develop a MAC and/or Windows-based GUI for embedded use of uPython register level procedures
- Work with new experiments on the implementation of basic sets of triggers (fast-or, veto, coincidence, region, topology, etc)
CURRENT R&D

- High gain, low IBF multilayer Micromegas
- Motivated by painful IBF issue for every Time Projection Chamber → need to gateless for high readout speed application
- MPGD intrinsically IBF blocker → Micromegas superior
THE EUROPEAN STRATEGY

- European Committee for Future Accelerators - ECFA mandated to develop a roadmap to balance R&D efforts in Europe
- After extensive expert and community consultation phase → final roadmap approved end of 2021
- Gaseous detectors as one of the many work-packages → TF1
THE EUROPEAN STRATEGY

- Detector R&D Roadmap → Detector R&D Themes DRDT

Gaseous

- **DRDT 1.1** Improve time and spatial resolution for gaseous detectors with long-term stability
- **DRDT 1.2** Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out schemes
- **DRDT 1.3** Develop environmentally friendly gaseous detectors for very large areas with high-rate capability
- **DRDT 1.4** Achieve high sensitivity in both low and high-pressure TPCs
THE EUROPEAN STRATEGY

- Plan is to restructure RD51
 - Formation of DRDC1 in 2023(?)
 - RD51 will cease to exist after 15 successful years of operation
 - Restructuring and implementation within the ECFA Detector R&D roadmap
 - Basic Research Needs BRN study analogous to ECFA Detector R&D roadmap
 - BRN roadmap did not have gaseous detectors as topic
 - SNOWMASS 2021 study introduced gaseous detectors as topic
 - U.S. community planning should be synergistic: BRN → ECFA Detector R&D roadmap
 - U.S. community should stay engaged with DRDC
 - U.S. community should establish MPGD facility/center within the country