

Recoil imaging for directional detection of dark matter, neutrinos and BSM

Ciaran O'Hare **University of Sydney**

Snowmass inter-frontier white paper [2203.05914] Strong community support: 167 signing authors, many contributing text/ideas/LOIs

Recoil imaging for dark matter, neutrinos, and physics beyond the Standard Model

Snowmass 2021 inter-frontier white paper:

IF5: Micro-pattern gas detectors CF1: Particle-like dark matter NF10: Neutrino detectors

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Abstract

C. A. J. O'Hare (Coordinator)^{1,2}, D. Loomba (Coordinator)³, K. Altenmüller⁴, H. Álvarez-Pol⁵, F. D. Amaro⁶, H. M. Araújo⁷, D. Aristizabal Sierra^{8,9}, J. Asaadi¹⁰, D. Attié¹¹, S. Aune¹¹, C. Awe^{12,13}, Y. Ayyad⁵, E. Baracchini^{14a,14b,14c}, P. Barbeau^{12,13}, J. B. R. Battat¹⁴, N. F. Bell¹⁵, B. Biasuzzi¹¹, L. J. Bignell¹⁶, C. Boehm^{1,2}, I. Bolognino¹⁷, F. M. Brunbauer¹⁸, M. Caamaño⁵, C. Cabo⁵, D. Caratelli¹⁹, J. M. Carmona⁴, J. F. Castel⁴, S. Cebrián⁴, C. Cogollos²⁰, D. Collison¹, E. Costa²², T. Dafni⁴, F. Dastgiri¹⁶, C. Deaconu²³, V. De Romeri²⁴, K. Desch²⁵, G. Dho^{26,27}, F. Di Giambattista^{26,27}, D. Díez-Ibáñez⁴, G. D'Imperio¹⁵, B. Dutta²⁸, C. Eldridge²⁹, S. R. Elliott³, A. C. Ezeribe²⁹, A. Fava¹⁹, T. Felkl³⁰, B. Fernández-Domínguez⁵, E. Ferrer Ribas¹¹, K. J. Flöthner^{18, 66}, M. Froehlich¹⁶, J. Galán⁴, J. Galindo⁴, F. García³¹, J. A. García Pascual⁴, B. P. Gelli³², M. Ghrear³³, Y. Giomataris¹¹, K. Gnanvo³⁴, E. Gramellini¹⁹, G. Grilli Di Cortona¹⁴, R. Hall-Wilton³⁵, J. Harton³⁶, S. Hedges¹², S. Higashino³⁷, G. Hill¹⁷, P. C. Holanda³², T. Ikeda³⁸, I. G. Irastorza⁴, P. Jackson¹⁷, D. Janssens^{18, 68}, B. Jones¹⁰, J. Kaminski³⁹, I. Katsioulas⁵¹, K. Kelly¹⁹, N. Kemmerich⁴⁰, E. Kemp³², H. B. Korandla³³, H. Kraus⁴¹, A. Lackner³⁰, G. J. Lane¹⁶, P. M. Lewis³⁹, M. Lisowska^{18, 67}, G. Luzón⁴, W. A. Lynch²⁹, G. Maccarrone¹⁴, K. J. Mack^{42,43}, P. A. Majewski⁴⁴, R. D. P. Mano⁶, C. Margalejo⁴, D. Markoff^{45,46}, T. Marley^{7,44}, D. J. G. Marques^{26,27}, R. Massarczyk⁴⁷, G. Mazzitelli¹⁴, C. McCabe⁴⁸, L. J. McKie¹⁶, A. G. McLean²⁹, P. C. McNamara¹⁵, Y. Mei⁷¹, A. Messina^{49,15}, A. F. Mills³, H. Mirallas⁴, K. Miuchi³⁷, C. M. B. Monteiro⁶, M. R. Mosbech^{1,2}, H. Muller³⁹, K. D. Nakamura⁷⁰, H. Natal da Luz⁵⁰, A. Natochii³³, T. Neep⁵¹, J. L. Newstead¹⁵, K. Nikolopoulos⁵¹, L. Obis⁴, E. Oliveri¹⁸, G. Orlandini^{18, 69}, A. Ortiz de Solórzano⁴, J. von Oy³⁹, T. Papaevangelou¹¹, O. Pérez⁴, Y. F. Perez-Gonzalez⁵², D. Pfeiffer⁵³, N. S. Phan⁴⁷, S. Piacentini^{49,15}, E. Picatoste Olloqui²⁰, D. Pinci¹⁵, S. Popescu⁵⁴, A. Prajapati^{26,27}, F. S. Queiroz^{55,56,57} J. L. Raaf¹⁹, F. Resnati¹⁸, L. Ropelewski¹⁸, R. C. Roque⁶, E. Ruiz-Choliz⁵⁸, A. Rusu⁵⁹, J. Ruz⁴, J. Samarati³⁵, E. M. Santos⁴⁰, J. M. F. dos Santos⁶, F. Sauli¹⁸, L. Scharenberg^{18,39}, T. Schiffer³⁹, S. Schmidt³⁹, K. Scholberg^{12,13}, M. Schott⁵⁸, J. Schueler³³, L. Segui¹¹, H. Sekiya⁶⁰, D. Sengupta¹⁷, Z. Slavkovska¹⁶, D. Snowden-Ifft⁶¹, P. Soffitta⁶², N. J. C. Spooner²⁹, M. van Stenis¹⁸, L. Strigari²⁸, A. E. Stuchbery¹⁶, X. Sun⁷², S. Torelli^{26,27}, E. G. Tilly³, A. W. Thomas¹⁷, T. N. Thorpe³³, P. Urquijo¹⁵, A. Utrobičić¹⁸, S. E. Vahsen³³, R. Veenhof^{18, 63}, J. K. Vogel⁶⁴, A. G. Williams¹⁷, M. H. Wood⁶⁵, and J. Zettlemoyer¹⁹

Current crisis in direct detection of dark matter via nuclear recoils "The neutrino fog"

Neutrinos will be observed in LZ or XENONnT very soon

Atmospheric and ⁸B solar neutrinos are going to be the troublemakers—their $CE\nu NS$ rates look just like 6 GeV and 100 GeV WIMPs in Xenon

Current experiments only access observables dependent on recoil energy, this makes their signal degenerate with an unshieldable background

Directional detection

A directional detector should be able to "see through" the neutrino fog The DM flux on Earth is highly anisotropic and should align with our galactic rotation \rightarrow a highly characteristic signal that is not mimicked by any background, and is robust

against particle-model and astrophysical uncertainties

[2008.12587] **CYGNUS:** Feasibility of a nuclear recoil observatory with directional sensitivity to dark matter and neutrinos

S. E. Vahsen,¹ C. A. J. O'Hare,² W. A. Lynch,³ N. J. C. Spooner,³ E. Baracchini,^{4, 5, 6} P. Barbeau,⁷ J. B. R. Battat,⁸ B. Crow,¹ C. Deaconu,⁹ C. Eldridge,³ A. C. Ezeribe,³ M. Ghrear,¹ D. Loomba,¹⁰ K. J. Mack,¹¹ K. Miuchi,¹² F. M. Mouton,³ N. S. Phan,¹³ K. Scholberg,⁷ and T. N. Thorpe^{1,6}

2020 CYGNUS paper discussed the feasibility of making a directional DM/neutrino observatory at the >10 m^3 scale (potentially up 1000 m^3 and beyond)

Compared the cost per physics potential of different readout technologies, keeping all other quantities (i.e gas properties) fixed.

Cygnus: projected sensitivity

Vahsen, CAJO+ [2008.12587]

 10^{4}

- 10 m³: world leading DM limits (assuming using gas that contains ¹⁹F)
- 1000 m³: enter neutrino fog
- 100k m³: competitive with latestage xenon experiments (DARWIN)

CYGNO (Italy)

CYGNUS/DRIFT (UK) CYGNUS-Oz (Australia)

CYGNUS/NEWAGE (Japan) CYGNUS-HD 40 L (USA)

Key issue: performance of low energy (<10 keVr) nuclear recoil track reconstruction

Initial track
After diffusion
True recoil dir.
Straggled recoil dir.

What is required to clear the neutrino fog? (see our review [2102.04596] and Snowmass WP [2203.05914] for reasoning)

- Angular resolution <30°
- Correct head / tail >75% of the time
- Fractional energy resolution < 20%

- At the level of individual events
- In as high a density target as possible
- Below <10 keVr
- With a timing resolution better than a few hours

All arrows point towards: 1. "Recoil imaging" Gas TPCs with MPGD readout (over other proposals in the field) 2. Specifically 3D, high-definition, electronic readout, using NID

If you don't achieve these then directionality adds nothing to the sensitivity (in the context of the ν fog)

And achieved...

HD TPC performance studies Final goal for high-definition imaging of recoils in 3D, meeting low-energy performance goals may not be so far away...

CNN reconstruction of neutron-induced He recoils in BEAST TPC J. Schueler, S. Vahsen (U. Hawaii)

In the meantime turn a background into a signal: $CE\nu NS$ physics case

 $\rightarrow CE\nu NS$ one of the least well-studied neutrino interactions

 \rightarrow recoil imaging detector in conjunction with neutrino beam could be used to measure it.

→ Increased background rejection against non-neutrino sources, as well as for searches for BSM interactions

Originally pursued by vBDX-DRIFT collaboration [2103.10857] and under discussion with Oakridge to place 1 m3 TPC at SNS

Directionality in MPGDs, beyond nuclear recoils

MPGDs can measure and distinguish electrons **and** nuclear recoils. Physics case should clearly be expanded to include electron recoils

Vahsen, CAJO, Loomba [2008.12587]

Electron and nuclear recoils

Solar neutrinos can scatter off electrons and nuclei \rightarrow gas detectors have both!

Solar neutrinos

 d^2R

Given known direction to the Sun, directional information allows one to reconstruct the neutrino energy spectrum event-by-event

$$\cos heta_{\odot} = \hat{f q}_r \cdot \hat{f q}_{\odot} = rac{E_
u + m}{E_
u} \sqrt{rac{E_r}{E_r + 2m}}$$

Measure recoil energies and angles

Empirically measure flux, $\Phi(E_{\nu})$

What can directional give you: Empirical flux reconstruction

 10^{1}

• O(10) m³ accesses only *pp*

- O(100) m³ accesses *pp*, ⁷Be, CNO
- O(1000) m³ access all fluxes except *hep*

To do this precisely need to achieve similar performance, O(10 deg.) angular resolution and O(10%)energy resolution, on electrons. Probably less demanding on head/ tail as background can be measured in side-bands

Applied physics: The Migdal effect

Emission of a low-energy electron during an almost immeasurably lowenergy nuclear recoil

→ Dark matter experiments like XENON are using this to lower their reach to extremely small DM masses

→ But the neutral Migdal effect from NRs has never been measured

Measuring the Migdal effect using neutrons and an O-TPC

Slide credit: Chris McCabe @ IDM

R&D directions

Use of negative ion drift in **MPGDs**

A critical issue will therefore be to develop next-generation MPGDs that retain sufficient avalanche gain with negative ion drift gases, so as to count individual electrons above the noise floor while keeping cost low-enough for eventual scale-up

Scalable readout electronics

Optical readout

2040	
1000 discovery eutrino fog	
CEvNS i.	
O (gas) SZ axions $\gtrsim 0.02 \text{ eV}$	
iecays	

Rough 10—20 year timeline in place See arXiv:[2203.05914] for more

MPGD requirements needed to achieve ambitious physics case for dark matter, neutrinos and BSM:

 \rightarrow High signal-to-noise electronic readouts with O(100 μ m³) voxel size. Energy threshold / resolution should be driven towards ultimate theoretical limit of a single primary electron (~30 eV deposit)

 \rightarrow Reconstruction of nuclear recoil vector directions with an angular resolution better than ~30° and >75% correct head/tail recognition. Modern machine learning techniques for track reconstruction should be investigated to achieve these at ~6 keVr energies and below.

→ Excellent particle ID and track reconstruction on both electrons and nuclei down to O(1) keVr energies, essential for detecting DM inside neutrino fog, and solar neutrino-physics studies

→ Significant radio purity reduction.

→ R&D into the use of **negative ion drift** gas mixtures in both electronic and optical readout MPGDs, as well as experimental validation of SF_6 in larger scale TPCs.

 \rightarrow Scalable readout electronics systems suitable for the O(m^2) readout planes at a reasonable cost. Highly multiplexed DAQs utilizing programmable, topological triggers will be key for cost reduction. Ultimately mass production will be needed

