

Snowmass IF5 meeting

Peter M. Lewis **22 July 2022**

Resources

Bonn Master's thesis from Andreas Loeschcke Centeno

[https://docs.belle2.org/record/2631/files/BELLE2-MTHESIS-2021-073.pdf]

This whitepaper [arXiv:2203.07287]

Belle II upgrade whitepaper [https://arxiv.org/abs/2203.11349]

Timing layer
[https://arxiv.org/abs/2203.04847]

A TPC-based tracking system for a future Belle II upgrade

Andreas Löschcke Centeno¹, Christian Wessel¹, Peter M. Lewis *¹, Oskar Hartbrich², Jochen Kaminski¹, Carlos Mariñas³, and Sven Vahsen²

¹University of Bonn, Institute of Physics, Nußallee 12, 53115 Bonn, Germany
²University of Hawaii, Department of Physics and Astronomy, 2505 Correa Rd., Honolulu, HI 96822, USA
³University of Valencia - CSIC, Instituto de Fisica Corpuscular (IFIC), Spain

March 15, 2022

Overview

A proof-of-concept project

- Can a tracking TPC work for Belle in a hypothetical ultra-high luminosity upgrade scenario? (2032+)
 - (drift chambers cannot)
- **Fine 3D segmentation** in principle is far more tolerant of high rates/high backgrounds

This project: demonstrate **proof-of-concept** for a tracking TPC in Belle II. Use **LCTPC** as a starting point with **Belle II** simulation.

Basic concept

Geometry constrained by Belle II layout (*top*)

- Abandon the inner volume to silicon pixels (VTX)
- Fill remaining volume with single drift
 volume and read out on BWD end
- Use T2K gas mixture Ar:CF₄:iC₄H₁₀
 (95:3:2) at atmospheric pressure
- Readout via **GridPix**:
 - Silicon pixels with integrated MICROMEGAS
 - 55x55 μm pixels

Why GridPix?

A number of attractive features for us

- 1:1 mapping of electrons:pixels → optimal resolution
- Intrinsically low ion backflow
- Could be used in **binary readout** → reduction of data throughput
- In-house expertise at Bonn
- It is real, so we can confidently simulate it

Ultimately, we would require a purpose-designed sensor, but we use GridPix for the proof-of-principle

Primary technical concerns

"This won't work at Belle because..."

- TPC can't provide a **trigger**
- Slow $v_{\text{drift}} \rightarrow \text{large event/background pileup}$
- High event rates → no gating → bad ion
 backflow → decreased resolution
- Long drift length → high diffusion → decreased resolution
- No dE/dx for low-p_T tracks
- ...

Today: address these one-by-one with simulation

A **single** simulated LCTPC event with beam backgrounds

Concern 1: trigger

Solution: fast timing layers

- Fast silicon (assume **50 ps** resolution)
- At low radius (25 or 45 cm)
- Multilayer coincidence triggering (assuming 10 cm² coincidence regions)
- Based on U Hawaii technology development (arXiv: 2203.04847)
- Results currently based on toy simulation including beam-induced backgrounds at Belle II

Concern 1: trigger

Timing layer findings

- Can replace trigger role of drift chamber with tolerable fake trigger rate (top)
- Major added bonus: PID via time-of-flight
 - \circ *More than* replaces missing dE/dx info
 - Pion/kaon separation excellent for low-p tracks...
 - ...could significantly improve efficiency of slow pion reconstruction in D* decays

Conclusion: existing technology can solve triggering issue of TPC, *and* missing dE/dx issue, with significant physics performance benefits

Concern 2: Pileup

First: event pileup

- High event rates + slow drift time → overlapping events
- **Untriggered** events like Bhabhas will still overlap physics and be read out
- With *continuous readout* and an *external trigger*, one "event" is like a **snapshot** of a continuous reel of tracks...

Concern 2: Pileup

First: event pileup **findings**

- The mean number of background physics tracks per triggered event is 9 (compared to ~11 for Y(4S) decays)
- These are overwhelmingly **Bhabha** tracks
- Overlapped Y(4S) events are very rare
- Easy to remove: overlapped tracks do not point to the IP and have diffusion width incompatible with their drift time

Event pileup should not be a major problem, but **beam-induced backgrounds** are...

Concern 2: Pileup

Second: background pileup

- Beam-induced backgrounds produce mostly low-energy photons
- These Compton-scatter to produce copious low-energy electrons in the drift volume...
- ...microcurlers...
- ...that ionize far more than MIPs over their path
- TPC would integrate these backgrounds over
 2*30 μs drift time (over 7400 beam crossings)

Ultra-high luminosity necessarily means high beam-induced backgrounds... is it tolerable?

Concern 2: Pileup

Second: background pileup **findings**

- (right: end view of one triggered event with beam background overlay)
- The total ionization rate ≅ rate from beam-induced microcurlers
- However, the **voxel occupancy** is **low** ($\sim 10^{-5}$) due to fine 3D granularity provided by GridPix (assuming 55 x 55 x 200 μ m³)
- Microcurlers are also very *distinctive* and can be significantly reduced by chip-level logic

Beam-induced ionization appears to be a major technical challenge, but it also appears to be **manageable**

Concern 3: IBF

Ungated, continuous operation

- Event time occupancy is $\sim 15\% \rightarrow$ gating is not possible
- GridPix are intrinsically low-IBF (\sim 1% at a gain of 2000)
- Projected ion densities with 5x luminosity will be comparable to other tracking TPCs with similar tracking requirements...
- ...however, our beam background simulation does not include injection backgrounds
- These are integrated over and may be *very* large due to continuous injection schemes

Ion backflow due to integrated backgrounds is **the** major unresolved technical challenge; solvable with clever design?

Concern 4: diffusion

Suitable tracking performance?

- Used modified basf2 track-finding and track-fitting algorithms fitting 3D space-points
- The key metric is p_{τ} resolution (*right*)
- The high resolution of the TPC design gives better resolution everywhere...
- ...but we still lack a realistic *mechanical* design, which will affect multiple scattering

Concern 4: diffusion

Suitable tracking performance?

- Forward/backward tracks have more hits (unlike CDC), improving resolution
- Overall, resolution is comparable to CDC

The short story: diffusion does not significantly degrade resolution due to large number of hits

Results and further work

Summary

• Our proof-of-concept is successful, with one caveat: **injection backgrounds** may be a major problem

What do we need to do next?

- A complete comparison of different amplification/readout options beyond GridPix
- Development of robust track-finding and track-fitting algorithms appropriate for TPCs
- Realistic estimate of effect of IBF

Implications for MPGD development

What would a purpose-built chip look like?

- Pixels with integrated MICROMEGAS
- 200 x 200 μm² pixels would be sufficient
- Time resolution of 25ns would be sufficient
- Binary readout
- Capable of continuous capture and triggered readout of a 30 µs buffer
- Capable of simple trigger and hit filtering logic

This is a *simpler* chip than GridPix; it will have to also be far *cheaper* to be viable for Belle II (needs to cover \sim 3 m²)

Thank you!