Theory Overview of Charged Lepton Flavor Violation in Heavy Particle Decays

Wolfgang Altmannshofer (UCSC)

waltmann@ucsc.edu

mainly based on Whitepaper 2205.10576 with:

Cecile Caillol (CERN), Mogens Dam (NBI), Stefania Xella (NBI), Yongchao Zhang (Nanjing)

Snowmass Summer Meeting 2022, Seattle, July 17 - 26, 2022

► In the SM, lepton flavor violating decays of the Z, Higgs, and top are suppressed by the tiny neutrino mass splittings

e.g.
$$BR(Z \to \mu e) \sim BR(Z \to \mu \mu) \left| \frac{g^2}{16\pi^2} \frac{m_{\nu}^2}{m_W^2} \right|^2 \sim 10^{-50}$$

Any observation in the foreseeable future would be an unambiguous sign of new physics.

Comparision with Low Energy Probes

 Consider LFV decays of the Z boson, the Higgs, the top in the presence of generic New Physics

$$\frac{\mathsf{BR}(Z \to \mu e)}{\mathsf{BR}(Z \to \mu \mu)} \sim g_{\mathsf{NP}}^{2} \left(\frac{v}{\Lambda_{\mathsf{NP}}}\right)^{4} , \qquad \frac{\mathsf{BR}(H \to \tau \mu)}{\mathsf{BR}(H \to \tau \tau)} \sim g_{\mathsf{NP}}^{2} \left(\frac{v}{\Lambda_{\mathsf{NP}}}\right)^{4} \\ \frac{\mathsf{BR}(t \to c \mu e)}{\mathsf{BR}(t \to W b)} \sim \frac{g_{\mathsf{NP}}^{2}}{\mathsf{16}\pi^{2}} \left(\frac{v}{\Lambda_{\mathsf{NP}}}\right)^{4}$$

Comparision with Low Energy Probes

 Consider LFV decays of the Z boson, the Higgs, the top in the presence of generic New Physics

$$\frac{\mathsf{BR}(Z \to \mu e)}{\mathsf{BR}(Z \to \mu \mu)} \sim g_{\mathsf{NP}}^{2} \left(\frac{v}{\Lambda_{\mathsf{NP}}}\right)^{4} , \quad \frac{\mathsf{BR}(H \to \tau \mu)}{\mathsf{BR}(H \to \tau \tau)} \sim g_{\mathsf{NP}}^{2} \left(\frac{v}{\Lambda_{\mathsf{NP}}}\right)^{4} \\ \frac{\mathsf{BR}(t \to c \mu e)}{\mathsf{BR}(t \to W b)} \sim \frac{g_{\mathsf{NP}}^{2}}{\mathsf{16}\pi^{2}} \left(\frac{v}{\Lambda_{\mathsf{NP}}}\right)^{4}$$

Compare to low energy probes (e.g. muon decays, tau decays)

$$\frac{\mathsf{BR}(\mu \to 3e)}{\mathsf{BR}(\mu \to e\nu_{\mu}\bar{\nu}_{e})} \sim g_{\mathsf{NP}}^{2} \left(\frac{v}{\Lambda_{\mathsf{NP}}}\right)^{4}$$

- Same dependence on NP couplings and scale, but much less Z, Higgs, top available in experiments
- Note: these are extremely generic/naive expectations; situation can be very different in concrete models.

Wolfgang Altmannshofer (UCSC)

	$1: X^3$	2 :	H^6		$3 : H^4D^2$			$5: \psi^2 H^3 + h.c.$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H	$(H^{\dagger}H)^3$	$Q_{H\square}$	(H^{\dagger})	$H)\Box(H^{\dagger}H)$	I)	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	
$Q_{\widetilde{G}}$	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD}	$(H^{\dagger}D_{\mu}$	H) [*] ($H^{\dagger}I$	$D_{\mu}H)$	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$	
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$							Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$	
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$									
	$4:X^2H^2$		$6: \psi^2 X H$	+ h.c.				$7: \psi^2 H^2$	D	
Q_{HG}	$H^{\dagger}H G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} \epsilon$	$(\tau)\tau^{I}HV$	$V^{I}_{\mu\nu}$	$Q_{Hl}^{(1)}$			$\vec{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{H\tilde{G}}$	$H^{\dagger}H \tilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu i}$	$(e_r)HB$	μν	$Q_{Hl}^{(3)}$		$(H^{\dagger}i\overleftarrow{D}$	${}^{I}_{\mu}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
Q_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T$	$^{A}u_{r})\tilde{H}$	$G^{A}_{\mu\nu}$	Q_{He}			$\vec{D}_{\mu}H)(\bar{e}_p\gamma^{\mu}e_r)$	
$Q_{H\widetilde{W}}$	$H^{\dagger}H \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} \imath$	$(r_r)\tau^I \tilde{H}$	$W^{I}_{\mu\nu}$	$Q_{Hq}^{(1)}$			$\vec{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
Q_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu i}$	$(u_r)\tilde{H} E$	$B_{\mu\nu}$	$Q_{Hq}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		
$Q_{H\widetilde{B}}$	$H^{\dagger}H \tilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T$	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$			Q_{Hu}		$\dot{\theta}_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$	
Q_{HWB}	$H^\dagger \tau^I H W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} a)$	$l_r)\tau^I H$	$W^{I}_{\mu\nu}$	Q_{Hd}		$(H^{\dagger}i\overleftarrow{L}$	$\vec{p}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{H\widetilde{W}B}$	$H^\dagger \tau^I H \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu i})$	$(d_r)HE$	$l_{\mu\nu}$	Q_{Hud} +	h.c.	$i(\tilde{H}^{\dagger}L$	$(\bar{u}_p \gamma^\mu d_r)$	
	$8:(\bar{L}L)(\bar{L}L)$		8 : (İ	$\bar{R}R)(\bar{R}R)$	t)	_	8:	$(\bar{L}L)(\bar{R}I)$	2)	
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ci}	(\bar{e}_p)	$\gamma_{\mu}e_{\tau})(\bar{e}$	$s\gamma^{\mu}e_t)$	Q_{le}	($(\bar{l}_p \gamma_\mu l_r)(\bar{e}$	$_{s}\gamma^{\mu}e_{t})$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_u	(\bar{u}_p)	$\gamma_{\mu}u_{r})(\bar{u}$	$i_s \gamma^{\mu} u_t$)	Q_{Iu}	($\bar{l}_p \gamma_\mu l_r)(\bar{u}$	$_{s}\gamma^{\mu}u_{t})$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_d	$d = (\bar{d}_p)$	$\gamma_{\mu}d_{r})(\dot{d}$	$(s\gamma^{\mu}d_{t})$	Q_{ld}	($\bar{l}_p \gamma_\mu l_r)(\bar{d}$	$s\gamma^{\mu}d_{t})$	
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{ei}		$\gamma_{\mu}e_r)(\bar{u}$		Q_{qe}	($\bar{q}_p \gamma_\mu q_r)(\bar{\epsilon}$	$i_s \gamma^{\mu} e_t$)	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ei}		$\gamma_{\mu}e_{r})(d$	$(_{s}\gamma^{\mu}d_{t})$	$Q_{qu}^{(1)}$	($\bar{q}_p \gamma_\mu q_r)(\bar{i}$	$i_s \gamma^{\mu} u_t$)	
		$Q_{us}^{(1)}$		$\gamma_{\mu}u_{r})(\dot{a}$	$\bar{l}_s \gamma^{\mu} d_t$)	$Q_{qu}^{(8)}$			$i_s \gamma^{\mu} T^A u_t$)	
		$Q_{ui}^{(8)}$	$(\bar{u}_p \gamma_{\mu})$	$\Gamma^A u_r)(d$	$\bar{l}_s \gamma^{\mu} T^A d_t$)	$Q_{qd}^{(1)}$	($\bar{q}_p \gamma_\mu q_r)(\dot{a}$	$\bar{l}_s \gamma^{\mu} d_t$)	
						$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma$	$\mu T^A q_r)(a$	$\bar{l}_s \gamma^{\mu} T^A d_t$)	
	$8 : (\bar{L}R)(\bar{I}R)$	$\bar{R}L$) + 1	h.c.	8:($\bar{L}R)(\bar{L}R)$	+ h.c.				
	$Q_{ledq} = (\bar{l}_j)$	$(\bar{d}_s)(\bar{d}_s)$	q_{tj} Q	(1) quqd	$(\bar{q}_p^j u_r)\epsilon_j$	$_{jk}(\bar{q}_s^k d_t)$				
			Q	(8) quqd	$(\bar{q}_p^j T^A u_r) \epsilon_j$	$_{jk}(\bar{q}_s^k T^A d_t$)			
			\bar{Q}	(1) lequ	$(\bar{l}_p^j e_r)\epsilon_j$	$k(\bar{q}_s^k u_t)$				
			0	(3) lequ	$(\bar{l}_{p}^{j}\sigma_{\mu\nu}e_{r})\epsilon_{j}$	(=kuv	\ \			

2499 baryon number conserving dim. 6 operators in total

Grzadkowski et al. 1008.4884

Wolfgang Altmannshofer (UCSC)

	$1: X^3$	2 : .	H^6		3:H	$^4D^2$		5 :	$\psi^2 H^3 + h.c.$
Q_G	$\int^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	Q_H ($H^{\dagger}H)^{3}$	$Q_{H\square}$	(H^{\dagger})	$H)\Box(H^{\dagger}H)$)	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e,H)$
$Q_{\tilde{G}}$	$f^{ABC} {\widetilde G}^{A\nu}_\mu G^{B\rho}_\nu G^{C\mu}_\rho$			Q_{HD}	$(H^{\dagger}D_{\mu}$	H) [*] ($H^{-}L$	(μH)	Q_{uH}	$(H^{+}H)(\bar{q}_{p}u_{r}\widetilde{H})$
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$							Q_{dH}	$(H^\dagger H)(\bar{q}_p d_r H)$
$Q_{\tilde{W}}$	$\epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$								
	$4:X^2H^2$	6	$:\psi^2 X H$	+ h.c.			7	$: \psi^2 H^2$	D
Q_{HG}	$H^{\dagger}H G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e$	$(\tau)\tau^{I}HW$	1 μν	$Q_{H!}^{(1)}$			$\vec{D}_{\mu}II)(\bar{l}_{p}\gamma^{\mu}l_{\tau})$
$Q_{H\widetilde{G}}$	$H^{\dagger}H {\widetilde G}^A_{\mu\nu}G^{A\mu\nu}$	Q_{zB}	$(\bar{l}_p \sigma^{\mu})$	$(e_\tau)HB_\mu$	r	$Q_{H!}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r}) =$
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T$	$(A_{v_r})\tilde{H}$	$F^A_{\mu\nu}$	Q_{He}			$\dot{f}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{H\widetilde{W}}$	$H^{\dagger}H \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_F \sigma^{\mu u} v$	$\iota_r)\tau^I \tilde{H} W$	$V^{I}_{\mu\nu}$	$Q_{Hq}^{(1)}$			$\overrightarrow{q}_{\mu}H)(\overline{q}_{p}\gamma^{\mu}q_{r})$
Q_{HB}	$H^{*}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu i}$	$(u_r)\tilde{H}B_i$	n.	$Q_{Hq}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{H\widetilde{B}}$	$H^{*}H \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu})$	$\Gamma^A d_r)H$	$\mathcal{G}^{A}_{\mu\nu}$	Q_{Hu}		$(H^{\dagger}i\overleftarrow{D}$	$(\bar{u}_p \gamma^{\mu} u_r)$
Q_{HWB}	$H^\dagger \tau^I H W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu \nu} a)$	$(t_{\tau})\tau^{I}HW$	$V^{I}_{\mu\nu}$	Q_{Hd}		$(H^{\dagger}i\overleftarrow{L})$	$(\bar{d}_p \gamma^{\mu} d_r)$
$Q_{H\widetilde{W}B}$	$H^{\dagger} \tau^{I} H \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_{\nu}\sigma^{\mu\nu}$	$(d_r)HB_{\mu}$	w	Q_{Hud} +	h.c.	$i(\widetilde{H}^*L$	$(\bar{u}_{\rho}\gamma^{\mu}d_{r})$
	$8:(\bar{L}L)(\bar{L}L)$		8:()	$\bar{R}R)(\bar{R}R)$			8:	$(\bar{L}L)(\bar{R}F)$	0
20	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_{j}$	$\gamma_{\mu}e_r)(\bar{e}_s$	$\gamma^{\mu} e_t$)	Q_{tv}	- ($\bar{l}_p \gamma_\mu l_\tau)(\bar{e}$	$_{s}\gamma^{\mu}e_{l})$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p$	$\gamma_{\mu}u_r)(\bar{u}_r)$	$\gamma^{\mu}u_{t})$	Q_{lu}	(l	$(\bar{u}_{p}\gamma_{\mu}i_{r})(\bar{u}_{p}\gamma_{\mu}i_{r})$	$_{s}\gamma^{\mu}u_{t})$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^J q_r)(\bar{q}_s \gamma^\mu \tau^J q_l)$	Q_{dd}	(\bar{d}_p)	$(\gamma_{\mu}d_r)(\bar{d}_s)$	$\gamma^{\mu}d_t$	Q_{ld}	()	$l_p \gamma_\mu l_r)(d$	$_{*}\gamma^{\mu}d_{t})$
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_i)$	Q_{eu}	$(\bar{e}_p$	$\gamma_{\mu}e_{\tau})(\bar{u}_{s}$	$\gamma^{\mu}u_t$)	Q_{qe}	(i	$\bar{i}_p \gamma_\mu q_r)(\bar{e}$	$i_s \gamma^{\mu} v_t$)
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau' l_r)(\bar{q}_s \gamma^\mu \tau^I q_i)$	Q_{cd}	$(\bar{e}_p$	$\gamma_{\mu}e_{r})(\bar{d}_{o}$	$\gamma^{\mu} d_t$)	$Q_{q_{2}}^{(1)}$	$(\bar{q}$	$\bar{q}_p \gamma_\mu q_r)(\bar{u}$	$_{a}\gamma^{\mu}u_{t})$
		$Q_{nd}^{(1)}$	$(\bar{u}_p$	$\gamma_{\mu}u_r)(\bar{d}_i$	$\gamma^{\mu}d_t)$	$Q_{q_{2}}^{(8)}$	$(\bar{q}_p \gamma_\nu$	$(T^A q_r)(\bar{u}$	$_{s}\gamma^{\mu}T^{A}u_{i})$
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu)$	$l^A u_r)(\bar{d}_s$	$\gamma^{\mu}T^{A}d_{i})$	$Q_{qd}^{(1)}$	(ĝ	$\bar{q}_p \gamma_\mu q_r)(\dot{a}$	$\tilde{l}_s \gamma^{\mu} d_t$)
						$Q_{qd}^{(8)}$	$(\bar{q}_P\gamma_t$	$T^A q_r)(\dot{a}$	$\tilde{l}_s \gamma^{\mu} T^A d_t$
	8 : (LR)($\bar{R}L$) + h	.c.	8 : (İ	$(\bar{L}R)(\bar{L}R)$	+ h.c.			
	Q_{ledg} (\overline{l}	$(\bar{d}_{sq})(\bar{d}_{sq})$	(j) Q	(1) gugd	$(\bar{q}_p^j u_r) \epsilon$	$_{jk}(\bar{q}_{s}^{k}d_{t})$	_		
					-im d	colomá i c			
	1		-Q	(8) gugd ()	$T_pT^n u_r \epsilon_j$	$_{jk}(\bar{q}_{s}^{k}T^{A}d_{t})$)		
				quqd = (1) leqx	$(\bar{l}_p^j e_r) \epsilon_j$ $(\bar{l}_p^j e_r) \epsilon_j$)		

2499 baryon number conserving dim. 6 operators in total

Grzadkowski et al. 1008.4884

4 fermion interactions

	$1: X^3$	2 :	H^6		3 : 1	H^4D^2	5	: $\psi^2 H^3 + h.c.$
Q_G	$\int^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_H = (H^{\dagger}H)^3$		$Q_{H\square}$ (H		$^{\dagger}H)\Box(H^{\dagger}H)$	$I) = Q_{eH}$	$(H^{\dagger}H)(\bar{l}_{p}e, H)$
$Q_{\tilde{G}}$	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD}	$(H^{\dagger}D$	$_{\mu}H)^{*}(H^{*}I$	$Q_{\mu H} = Q_{uH}$	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\tilde{H})$
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$						Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$
$Q_{\widetilde{W}}$	$\epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$							
	$4:X^2H^2$	6	$: \psi^2 X H$	+ h.c.			$7 : \psi^2 H^2$	D
Q_{HG}	$H^{\dagger}H G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu})$	$e_r \tau^I HW$	$\frac{1}{\mu\nu}$	$Q_{H!}^{(1)}$		$\overrightarrow{D}_{\mu} II (\overline{l}_{p} \gamma^{\mu} l_{\tau})$
$Q_{H\bar{G}}$	$H^{\dagger}H \tilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{zB}	$(\bar{l}_p \sigma^\mu$	$\nu e_{\tau})HB_{\mu}$	v	$Q_{H^{2}}^{(3)}$		$\dot{P}^{I}_{\mu}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu})$	$l^A u_r) \tilde{H}$	$\mathcal{F}^{A}_{\mu\nu}$	Q_{H*}		$\overrightarrow{D}_{\mu}H)(\overrightarrow{e}_{p}\gamma^{\mu}e_{r})$
$Q_{H\widetilde{W}}$	$H^{\dagger}H \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_{\rm F}\sigma^{\mu\nu})$	$u_r)\tau^I \tilde{H} W$	$V^{I}_{\mu\nu}$	$Q_{Hq}^{(1)}$		$\overrightarrow{D}_{\mu}H)(\overline{q}_{p}\gamma^{\mu}q_{r})$
Q_{HB}	$H^{-}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu})$	$v u_r) \tilde{H} B_i$	w	$Q_{Hq}^{(3)}$		${}^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{H\widetilde{B}}$	$H^*H \tilde{B}_{\mu\nu}B^{\mu\nu}$	$Q_{:\!$		$T^A d_r) H O$		Q_{Hu}		$\vec{D}_{\mu}H)(\bar{u}_p\gamma^{\mu}u_{\tau})$
Q_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}		$(d_r)\tau^I H W$		Q_{Hd}		$\vec{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H \widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{AB}	$(\bar{q}_{\nu}\sigma^{\mu}$	$\nu d_{\tau})HB_{\mu}$	w	$Q_{ilud} +$	h.c. $i(\widetilde{H}^{*})$	$(\bar{u}_p \gamma^{\mu} d_r)$
	$8:(\bar{L}L)(\bar{L}L)$	\sim	8:(4	$\bar{R}R)(\bar{R}R)$			$8:(\bar{L}L)(\bar{R})$	R)
Q_{11}	$(\bar{l}_{y}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$	Q_{ee}	(ē _j	$_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}$	$\gamma^{\mu}e_t$)	Q_{lv}	$(\bar{l}_p \gamma_\mu l_\tau)($	$\bar{e}_s \gamma^{\mu} e_1$)
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	(<i>ū</i> ₁	$\gamma_{\mu}u_{r})(\bar{u}_{r})$	$\gamma^{\mu}u_{t})$	Q_{lu}	$(\bar{l}_p \gamma_\mu i_r)(i$	$a_s \gamma^{\mu} u_t$)
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^J q_r) (\bar{q}_s \gamma^\mu \tau^J q_t)$) Q _{dd}	(\bar{d}_i)	$\gamma_{\mu}d_r)(\bar{d}_s$	$\gamma^{\mu}d_{t}$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(e$	$d_s \gamma^{\mu} d_t$)
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_i)$	Q_{eu}	(\bar{e}_i)	$\gamma_{\mu}e_{\tau})(\bar{u}_{s}$	$\gamma^{\mu}u_{t})$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)($	$\tilde{e}_s \gamma^{\mu} e_t$)
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau' l_r)(\bar{q}_s \gamma^\mu \tau' q_i)$		$(\bar{e}_{p}$	$_{o}\gamma_{\mu}e_{r})(\bar{d}_{o}$	$\gamma^{\mu} d_t$)	$Q_{q_{2}}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)($	$\bar{u}_a \gamma^{\mu} u_t$)
		$Q_{nd}^{(1)}$	1 1	$_{p}\gamma_{\mu}u_{r})(\overline{d}_{s}$		$Q_{q_{2}}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)($	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu)$	$T^A u_r)(\bar{d}_s$	$\gamma^{\mu}T^{A}d_{i}$		$(\bar{q}_p \gamma_\mu q_r)($	
						$Q_{qd}^{(8)}$	$(\bar{q}_p\gamma_\mu T^A q_r) ($	$\bar{d}_s \gamma^{\mu} T^A d_t$)
	$8 : (\bar{L}R)($	$(\bar{R}L) + h$.c.	8 : (1	$(\bar{L}R)(\bar{L}R)$	+ h.c.		
	$\frac{8 : (\bar{L}R)(}{Q_{ledq}}$ (i)			8:(1)		+ h.c. $a_{jk}(\bar{q}_s^k d_t)$	_	
			(j) - G	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r)$)	
			(j) (($Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r)$ $\bar{q}_p^j T^A u_r)$	$e_{jk}(\bar{q}_s^k d_t)$)	

2499 baryon number conserving dim. 6 operators in total

Grzadkowski et al. 1008.4884

4 fermion interactions

dipole transitions

	$1 : X^{3}$	2 : .	H^6	3 : I	T^4D^2	$5 : \psi^2 H^3$	3 + h.c.	
Q_G	$\int^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	Q_H ($H^{\dagger}H)^{3}$ Q_{H}	□ (H [†]	$^{\dagger}H)\Box(H^{\dagger}H)$	$Q_{eH} = (H^{\dagger})$	$H)(\bar{l}_p e, H)$	
$Q_{\tilde{G}}$	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$		Q_H	$D = (H^{\dagger}D)$	$_{\mu}H)^{*}(H^{*}D)$	$_{\mu}H$ = Q_{uH} ($H^{\dagger}I$	$H)(\bar{q}_p u_r \tilde{H})$	
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					$Q_{dH} = (H^{\dagger})$	$H)(\bar{q}_p d_r H)$	
$Q_{\tilde{W}}$	$\epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$							
Q _{HC}	$4 : X^2 H^2$ $H^{\dagger} H G^A_{\mu\nu} G^{A\mu\nu}$	Q_{eW}	$\psi^2 X H + h.c$ $(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I h$			$7: \psi^2 H^2 D$ $(H^{\dagger} i \overleftrightarrow{D}_{\mu} H)($	$(\bar{l}_{p}\gamma^{\mu}l_{\tau})$	2499 baryon number conserving
$Q_{H\bar{G}}$	$H^{\dagger}H \tilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{zB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H$	$B_{\mu\nu}$	$Q_{H1}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\overline{l}$	$_{p}\tau^{I}\gamma^{\mu}l_{r})$	dim. 6 operators in total
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A v_r)$	$\tilde{H} G^A_{\mu\nu}$	Q_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)($	$\bar{e}_p \gamma^{\mu} e_r$)	I
$Q_{H\widetilde{W}}$	$H^{\dagger}H \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_{\rm F}\sigma^{\mu u}u_r)\tau^I$	$\tilde{H} W^{I}_{\mu\nu}$	$Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)($		Grzadkowski et al. 1008.4884
Q_{HB}	$H^{-}H B_{\mu\nu}B^{\mu\nu}$	Q_{nB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{H}$	$B_{\mu\nu}$	$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(q$		
$Q_{H\widetilde{B}}$	$H^*H \tilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r)$	$H G^A_{\mu\nu}$	Q_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)($		
Q_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I d_r$	· · ·	Q_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)($		
$Q_{H\widetilde{W}B}$	$H^\dagger \tau^{ t} H \widetilde{W}^{ l}_{\mu \nu} B^{\mu \nu}$	Q_{dB}	$(\bar{q}_{\nu}\sigma^{\mu\nu}d_{\tau})H$	$B_{\mu\nu}$	Q _{Hud} + 1	i.e. $i(\tilde{H}^{-}D_{\mu}H)(i$	$\bar{u}_{p}\gamma^{\mu}d_{r})$	4 fermion interactions
	$8:(\bar{L}L)(\bar{L}L)$	_	$8:(\bar{R}R)(\bar{R})$	$\bar{R}R)$	\sim	$8:(\bar{L}L)(\bar{R}R)$	_	
Q_{1l}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)$	$(\bar{e}_s \gamma^\mu e_t)$	Q_{lv}	$(\bar{l}_p \gamma_\mu l_\tau)(\bar{e}_s \gamma^\mu e_t)$		dipolo transitiona
$Q_{qq}^{(1)}$	$(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)$		Q_{lu}	$(\bar{l}_p \gamma_\mu i_r)(\bar{u}_s \gamma^\mu u_t)$		dipole transitions
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^J q_r)(\bar{q}_s \gamma^\mu \tau^J q_t)$	Q_{dd}		$(\bar{d}_s \gamma^{\mu} d_t)$	Q_{Id}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$		
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_i)$	Q_{eu}		$(\bar{u}_s \gamma^{\mu} u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$		"Z-penguins"
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau' l_r)(\bar{q}_s \gamma^\mu \tau^I q_i)$	Q_{cd}		$(\bar{d}_o \gamma^{\mu} d_t)$	$Q_{qx}^{(1)}$	$(\bar{q}_{\beta}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}$		
		$Q_{nd}^{(1)}$		$(\bar{d}_s \gamma^{\mu} d_t)$		$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T)$		
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r)$	$(d_s \gamma^{\mu} T^{A} d_i)$	- 44	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$		
					$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A q_r)$	$^{a}d_{t})$	
	$8 : (\bar{L}R)($	$\bar{R}L$) + h	.c. 8	$: (\bar{L}R)(\bar{L}R)$	+ h.c.	_		
	Q_{ledq} (\bar{l}	$(\bar{d}_{sq})(\bar{d}_{sq})$		$(\bar{q}_p^j u_r)$	$e_{jk}(\bar{q}_s^k d_t)$			
			$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r)$	$\epsilon_{jk}(\bar{q}_s^k T^A d_t)$			
			$Q_{lequ}^{(1)}$		$j_k(\bar{q}_s^k u_t)$			
			$Q_{lequ}^{(3)}$	$(\tilde{l}_p^j \sigma_{\mu\nu} e_r) \epsilon$	$_{jk}(\bar{q}_s^k\sigma^{\mu\nu}u_t)$			

	$1 : X^{3}$	2 : .	H^6		$3 : H^4D^2$			$5: \psi^2 H^3 + h.c.$		
Q_G	$\int^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	$Q_H = (H^{\dagger}H)^3$		$Q_{H\square}$ (H		$^{\dagger}H)\Box(H^{\dagger}H)$		Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e,H)$	
$Q_{\tilde{G}}$	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD}	$(H^{\dagger}D_{\mu}F$	$H^*(H^*L)$	$D_{\mu}H)$	Q_{uH}	$(H^{+}H)(\bar{q}_{p}u_{r}\tilde{H})$	
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$							Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$	
$Q_{\tilde{W}}$	$\epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$									
	$4:X^2H^2$	6	$: \psi^2 X I$	I + h.c.			7	$: \psi^2 H^2$	D	
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu}$	e_{τ}) $\tau^{I}HW$	$\frac{7I}{\mu\nu}$	$Q_{H!}^{(1)}$			$\vec{D}_{\mu}II)(\bar{l}_{p}\gamma^{\mu}l_{\tau})$	
$Q_{H\widetilde{G}}$	$H^{\dagger}H {\tilde G}^A_{\mu\nu}G^{A\mu\nu}$	Q_{zB}	$(\bar{l}_p \sigma^{\mu})$	$\nu e_{\tau})HB_{\mu}$	a.	$Q_{H!}^{(3)}$		$(H^{\dagger}i\overleftarrow{D}$	${}^{I}_{\mu}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r}) =$	
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{Iu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu})$	$I^A u_r) \tilde{H}$	$G^A_{\mu\nu}$ Q_{He}			$(H^{\dagger}i\overleftarrow{I}$	$\vec{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{H\widetilde{W}}$	$H^{\dagger}H \widetilde{W}^{I}_{\mu\nu} W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_{\rm F}\sigma^{\mu u}$	$u_r)\tau^I \hat{H} V$	$V^{I}_{\mu\nu}$	$Q_{Hq}^{(1)}$		$(H^{\dagger}i\overleftarrow{I}$	$\overrightarrow{\partial}_{\mu}H)(\overline{q}_{p}\gamma^{\mu}q_{r})$	
Q_{HB}	$H^{-}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu}$	$v u_r) \tilde{H} B_i$	$B_{\mu\nu} = Q_{Hq}^{(3)}$				${}^{I}_{\mu}H)(\bar{q}_{\rho}\tau^{I}\gamma^{\mu}q_{r})$	
$Q_{H\widetilde{B}}$	$H^{*}H \widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$			Q_{Hu}		$(H^{\dagger}i\overleftarrow{L}$	$\dot{D}_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$	
Q_{HWB}	$H^\dagger \tau^I H W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu \nu}$	$d_r \tau^I H V$	$V^{I}_{\mu\nu}$	Q_{Hd}		$(H^{\dagger}i\overleftarrow{L}$	$\vec{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{H\widetilde{W}B}$	$H^\dagger \tau^I H {\widetilde W}^I_{\mu\nu} B^{\mu\nu}$	Q_{AB}	$(\bar{q}_{\nu}\sigma^{\nu}$	$\nu d_r H B_i$	ωv	$Q_{Hud} +$	h.c.	$i(\widetilde{H}^*L$	$(\bar{u}_p \gamma^{\mu} d_r)$	
	$8:(\bar{L}L)(\bar{L}L)$		8:($\bar{R}R)(\bar{R}R$)		8:($\bar{L}L)(\bar{R}I$	R)	
Q_{1l}	$(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$	Q_{ee}	(ē	$p\gamma_{\mu}e_{r})(\bar{e}_{s}$	$\gamma^{\mu} e_t$)	Q_{lv}	(Ī	$p\gamma_{\mu}l_{\tau})(\bar{e}$	$_{s}\gamma^{\mu}e_{t})$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	(ū	$_{p}\gamma_{\mu}u_{r})(\bar{u}_{r})$	$\gamma^{\mu}u_{t})$	Q_{lu}	(\bar{l}_i)	$\gamma_{\mu}i_{\tau})(\bar{u}$	$_{s}\gamma^{\mu}u_{t})$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^J q_r)(\bar{q}_s \gamma^\mu \tau^J q_t)$	Q_{dd}	(d	$_{p}\gamma_{\mu}d_{r})(\bar{d}_{r})$	$\gamma^{\mu}d_{t})$	Q_{ld}	(l_i)	$\gamma_{\mu}l_{\tau})(d$	$(_*\gamma^{\mu}d_t)$	
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_i)$	Q_{eu}	$(\bar{e}$	$_{p}\gamma_{\mu}e_{\tau})(\bar{u}_{s}$	$\gamma^{\mu}u_{t})$	Q_{qe}	$(\bar{q}$	$_{p}\gamma_{\mu}q_{r})(i$	$\bar{\epsilon}_s \gamma^{\mu} v_t$)	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^J l_r)(\bar{q}_s \gamma^\mu \tau^I q_i)$	Q_{cd}	$(\bar{e}$	$_p \gamma_\mu e_r)(\bar{d}_c$	$\gamma^{\mu} d_t$)	$Q_{q_2}^{(1)}$	$(\bar{q}_l$	$\gamma_{\mu}q_{r})(i$	$i_s \gamma^{\mu} u_t$)	
		$Q_{nd}^{(1)}$	(ū	$_{p}\gamma_{\mu}u_{r})(\bar{d}_{r})$	$\gamma^{\mu}d_{t})$	$Q_{q_{2}}^{(8)}$	$(\bar{q}_p \gamma_\mu$	$T^A q_r)(i$	$i_s \gamma^{\mu} T^A u_i$)	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu$	$T^A u_r)(\bar{d}_i$	$\gamma^{\mu}T^{A}d_{i})$	$Q_{qd}^{(1)}$	(\bar{q}_i)	$\gamma_{\mu}q_{r})(\dot{a}$	$\bar{l}_s \gamma^{\mu} d_t$)	
						$Q_{qd}^{(8)}$	$(\bar{q}_P\gamma_\mu$	$T^A q_r)(\dot{a}$	$\bar{l}_s \gamma^{\mu} T^A d_t$)	
	$8 : (\bar{L}R)(\bar{I}$	$\overline{R}L) + h$.c.	8:($\bar{L}R)(\bar{L}R) +$	- h.c.				
	$Q_{ledg} = (\bar{l}_{j}^{*})$	(\bar{d}_{sq})		$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \epsilon_{jk}$	$(\bar{q}_s^k d_t)$				
			0	$Q_{qugd}^{(8)}$ ($\bar{q}_p^j T^A u_r) \epsilon_{jk}$	$(\bar{q}_s^k T^A d_t$)			
			($Q_{legx}^{(1)}$	$(\bar{l}_{p}^{j}e_{r})\epsilon_{jk}$	$(\bar{q}_s^k u_t)$				
						$\bar{q}_s^k \sigma^{\mu\nu} u_t$				

2499 baryon number conserving dim. 6 operators in total

Grzadkowski et al. 1008.4884

4 fermion interactions

dipole transitions

"Z-penguins"

"Higgs penguins"

LFV Z Decays

Existing/Expected Bounds

▶ Results from the LHC: ATLAS (139 fb⁻¹)

Phys.Rev.Lett. 127 (2022) 271801; Nature Phys. 17 (2021) 7, 819-825; ATLAS-CONF-2021-042

 ${f BR}(Z o \mu e) < 3.04 imes 10^{-7} \ {f BR}(Z o au e) < 5.0 imes 10^{-6} \ {f BR}(Z o au \mu) < 6.5 imes 10^{-6}$

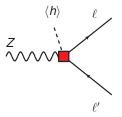
- ▶ Better than LEP for all decay modes.
- In all searches there are backgrounds ⇒ expect sensitivities to improve with √L, i.e. ~ factor of 5 at the HL-LHC.
- ► At Tera-Z factories expect $BR(Z \rightarrow \mu e) \sim 10^{-8} 10^{-10}$ and $BR(Z \rightarrow \tau \ell) \sim 10^{-9}$ (Dam 1811.09408)

- ► Z couplings are protected by SU(2) gauge symmetry
- \Rightarrow generic expectation for a new physics effect

$$\frac{{\sf BR}(Z\to\ell\ell')}{{\sf BR}(Z\to\ell\ell)}\sim g_{\sf NP}^2\left(\frac{v}{\Lambda_{\sf NP}}\right)^4\sim 4\times 10^{-7}\times g_{\sf NP}^2\left(\frac{10\,{\sf TeV}}{\Lambda_{\sf NP}}\right)^4$$

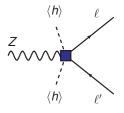
 \Rightarrow sensitivity to New Physics at scales of

 $\Lambda_{NP}\sim 10$ TeV at the HL-LHC $\Lambda_{NP}\sim 50 \text{ TeV} \text{ at FCC-ee/CEPC}$

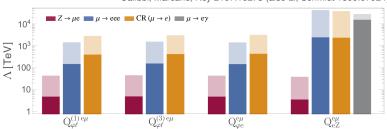

LFV Z Decays in the EFT Framework

 Parameterize New Physics in a systematic and controlled way: in terms of dim-6 operators of the SMEFT

dipoles

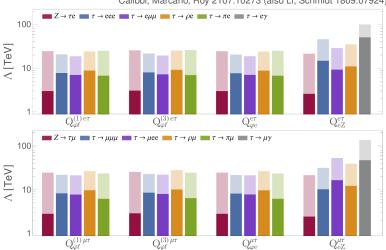

$$\mathcal{O}_{dW} = (\bar{\ell}\sigma^{\mu\nu}\tau^{a}P_{R}\ell')H W^{a}_{\mu\nu}$$

$$\mathcal{O}_{dB} = (\bar{\ell} \sigma^{\mu\nu} P_R \ell') H \ B_{\mu\nu}$$


"Z penguins"

$$\mathcal{O}_{hl}^{(3)} = (H^{\dagger}i\overleftrightarrow{\mathsf{D}}_{\mu}^{a}H)(\bar{\ell}\gamma^{\mu}\tau^{a}P_{L}\ell')$$
$$\tilde{\mathcal{O}}_{hl}^{(1)} = (H^{\dagger}i\overleftrightarrow{\mathsf{D}}_{\mu}H)(\bar{\ell}\gamma^{\mu}P_{L}\ell')$$
$$\mathcal{O}_{he} = (H^{\dagger}i\overleftrightarrow{\mathsf{D}}_{\mu}H)(\bar{\ell}\gamma^{\mu}P_{R}\ell')$$

Complementarity with Low Energy Probes


- Many flavor violating low energy processes will be affected as well.
- Severe indirect constraints on $Z \rightarrow \mu e$ from $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e$, $\mu \rightarrow e$ conversion (barring accidental cancellations).

Calibbi, Marcano, Roy 2107.10273 (also Li, Schmidt 1809.07924)

Complementarity with Low Energy Probes

Complementary sensitivity in the case of taus.

Calibbi, Marcano, Roy 2107.10273 (also Li, Schmidt 1809.07924)

LFV Higgs Decays

Current and Future Sensitivities

Results from the LHC

ATLAS 1907.06131 (\sim 36 fb^{-1}), ATLAS 1909.10235 (\sim 139 fb^{-1}), CMS 2105.03007 (\sim 137 fb^{-1})

$$\begin{aligned} \mathsf{BR}(H \to \mu e) &< 6.1 \times 10^{-5} \\ \mathsf{BR}(H \to \tau e) &< 0.22\% \\ \mathsf{BR}(H \to \tau \mu) &< 0.15\% \end{aligned}$$

- ▶ Expect sensitivities to improve by ~ 1 order of mag. at the HL-LHC
- ► Expect sensitivities at future *e*⁺*e*⁻ colliders that are at least as good (Qin et al. 1711.07243)

The Higgs and Flavor

 $\mathcal{L}_{\text{Yukawa}} = \lambda_{ij} \, \overline{\Psi}_i \Psi_j \, H$

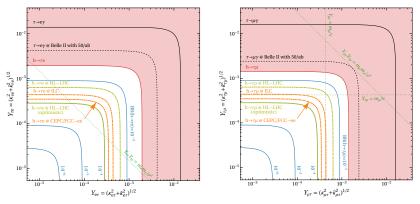
 In the Standard Model the Yukawa couplings are the only sources of flavor and CP violation
 → the couplings of the Higgs to fermion mass eigenstates are flavor diagonal and CP conserving

$$\frac{1}{\nu} \begin{pmatrix} m_{u,d,e} & 0 & 0 \\ 0 & m_{c,s,\mu} & 0 \\ 0 & 0 & m_{t,b,\tau} \end{pmatrix}$$

The Higgs and Flavor

$$\mathcal{L}_{\text{Yukawa}} = \lambda_{ij} \, \bar{\Psi}_i \Psi_j \, H + \frac{\lambda_{ij}}{\Lambda^2} \, \bar{\Psi}_i \Psi_j \, H^3$$

 In the Standard Model the Yukawa couplings are the only sources of flavor and CP violation
 → the couplings of the Higgs to fermion mass eigenstates are flavor diagonal and CP conserving

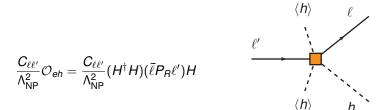

$$\frac{1}{\nu} \begin{pmatrix} m_{u,d,e} & 0 & 0 \\ 0 & m_{c,s,\mu} & 0 \\ 0 & 0 & m_{t,b,\tau} \end{pmatrix} + \frac{\nu^2}{\Lambda^2} \begin{pmatrix} \star & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix}$$

New Physics can modify the flavor diagonal Higgs couplings
 New Physics can lead to flavor and CP violating Higgs couplings

Phenomenological parameterization: $\mathcal{L}_{CLFV} = -\underline{Y}_{\ell\ell'} \bar{\ell} P_R \ell' h + h.c.$

Bounds on Flavor Violating Higgs Couplings

WA, Caillol, Dam, Xella, Zhang 2205.10576

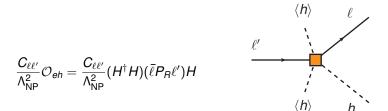


• Weak indirect constraints from $\tau \to \mu \gamma$ and $\tau \to e \gamma$.

• $\mu \rightarrow e\gamma$ strongly constrains BR($H \rightarrow \mu e$) and BR($H \rightarrow \tau \mu$)×BR($H \rightarrow \tau e$)

Blankenburg, Ellis, Isidori 1107.1216; Harnik, Kopp, Zupan 1209.1397; Davidson, Verdier 1211.1248

LFV Higgs Decays in the EFT Framework

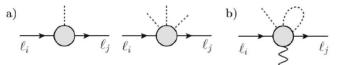


Gives flavor changing Higgs couplings

$$Y_{\ell\ell'} = \frac{C_{\ell\ell'}}{\sqrt{2}} \frac{v^2}{\Lambda_{NP}^2} \sim 4 \times 10^{-4} \left(\frac{10\,\text{TeV}}{\Lambda_{NP}}\right)^2$$

 Expected sensitivities at future machines probe new physics at Λ_{NP} ~ 10 TeV.

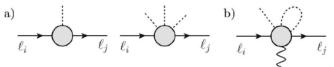
LFV Higgs Decays in the EFT Framework



$$Y_{\ell\ell'} = \frac{C_{\ell\ell'}}{\sqrt{2}} \frac{v^2}{\Lambda_{\text{NP}}^2} \sim 4 \times 10^{-4} \left(\frac{10\,\text{TeV}}{\Lambda_{\text{NP}}}\right)^2$$

- Expected sensitivities at future machines probe new physics at Λ_{NP} ~ 10 TeV.
- Comment: need to be very careful when calculating loops outside the EFT framework. Results might be gauge dependent. (WA, Gori, Hamer, Patel arXiv:2009.01258)

LFV Higgs Decays in NP Models


In new physics models one often encounters strong constraints: The physics that generates the LFV Higgs coupling, will typically also give direct contributions to radiative decays (Dorsner et al. 1502.07784)

Contributions to lepton Yukawa couplings (a), electromagnetic dipole (b)

LFV Higgs Decays in NP Models

In new physics models one often encounters strong constraints: The physics that generates the LFV Higgs coupling, will typically also give direct contributions to radiative decays (Dorsner et al. 1502.07784)

Contributions to lepton Yukawa couplings (a), electromagnetic dipole (b)

handwavy upper bound in many models

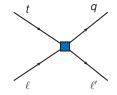
(assuming that the Wilson coefficient of the dipole is $\frac{1}{16\pi^2}$ × the Wilson coefficient of the Higgs penguin)

$$\mathsf{BR}(h o au\mu) \sim 26 imes \mathsf{BR}(au o \mu\gamma) \lesssim 10^{-6}$$

WA, Gori, Kagan, Silvestrini, Zupan 1507.07927

⇒ Observation of a LFV Higgs decay with expected exp. sensitivities likely implies an additional source of EW symmetry breaking

LFV Top Decays


EFT Setup and Sensitivity to New Physics

3 body decays that violate lepton and quark flavor $t \rightarrow q\ell\ell'$

(Davidson, Mangano, Perries, Sordini 1507.07163)

$$\mathcal{O}_{LL} = (\bar{q}\gamma_{\mu}P_{L}t)(\bar{\ell}\gamma^{\mu}P_{L}\ell')$$
$$\mathcal{O}_{RR} = (\bar{q}\gamma_{\mu}P_{R}t)(\bar{\ell}\gamma^{\mu}P_{R}\ell')$$

+ many other Dirac structures

The decays are competing with an unsuppressed 2 body decay t
ightarrow Wb

$$\mathsf{BR}(t \to c \mu e) \sim \frac{g_{\mathsf{NP}}^2}{16\pi^2} \left(\frac{v}{\Lambda_{\mathsf{NP}}}\right)^4 \sim 2 \times 10^{-5} \times g_{\mathsf{NP}}^2 \left(\frac{1\,\mathsf{TeV}}{\Lambda_{\mathsf{NP}}}\right)^4$$

- Strong indirect bounds from B meson decays if left handed quarks are involved.
- ► For right handed quarks, LHC has the best sensitivity.

Experimental Sensitivity

- ► Look for $t\bar{t}$ production followed by a rare top decay $t \rightarrow q\mu e$ and also for non-standard single top production $gq \rightarrow t\mu e$.
- Main background from tt
 , which gives two b-jets
- Signal has only a single b-jet
- Translation into top branching ratio depends on the Dirac structure of the operator

 $BR(t \rightarrow u \mu e) \lesssim 10^{-7}$

 $\mathsf{BR}(t \to c \mu e) \lesssim 10^{-6}$

- ► Expect factor of ~ 5 improvement at HL-LHC
- For further improvement need FCC-hh

138 fb⁻¹ (13 TeV) CMS $B(t \rightarrow e_{HC}) \times 10^{-6}$ 3.5 2.5 2.5 excluded region CLFV Obs $Exp \pm 1\alpha$ Vector Scalar Tensor 0.5 0.05 01 0.15 0.2 0.25 0.3 $B(t \rightarrow euu) \times 10^{-6}$

LFV New Physics Resonances

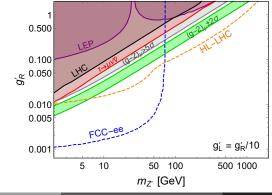
LFV New Physics Resonances

 Many BSM scenarios contain neutral resonances that can have lepton flavor violating couplings

e.g. Z' bosons, or additional neutral Higgs bosons H.

 Obvious approach: extend the Z and Higgs searches to higher (and lower!) masses

$$\begin{split} & \textit{pp} \rightarrow \textit{Z}' \rightarrow \textit{e}\mu, \textit{e}\tau, \mu\tau \ , \qquad \textit{pp} \rightarrow \textit{H} \rightarrow \textit{e}\mu, \textit{e}\tau, \mu\tau \\ & \textit{e}^+\textit{e}^- \rightarrow \textit{Z}' \rightarrow \textit{e}\mu, \textit{e}\tau, \mu\tau \ , \qquad \textit{e}^+\textit{e}^- \rightarrow \textit{Z} + \textit{H} \rightarrow \textit{Z} + \textit{e}\mu, \textit{e}\tau, \mu\tau \end{split}$$

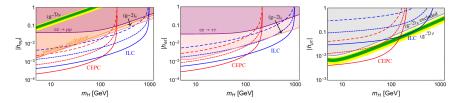

 In contrast to standard high-mass di-lepton resonance searches, no irreducible background from Drell-Yan

Exotic Scenarios

- Can imagine exotic scenarios: e.g. a Z' that couples dominantly in a flavor violating way to $\tau\mu$ (can give a viable explanation of $(g-2)_{\mu}$)
- Currently weakly constrained, but could give spectacular same sign lepton pair signatures at lepton colliders

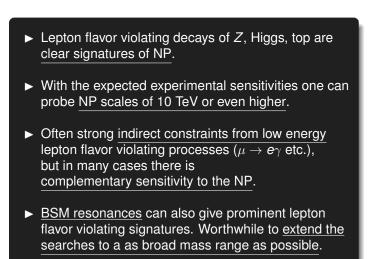
e.g.
$$e^+e^- \rightarrow Z'\tau^+\mu^- \rightarrow \tau^+\tau^+\mu^-\mu^-$$

WA, Caillol, Dam, Xella, Zhang 2205.10576 (update of WA, Chen, Dev, Soni 1607.06832)



More Exotic Scenarios

 Similar results are found for additional Higgs boson that have only flavor violating couplings


e.g.
$$e^+e^- \rightarrow H\mu^+e^- \rightarrow \mu^+\mu^+e^-e^-$$

Dev, Mohapatra, Zhang 1711.08430

 Model building challenge: construct a model in which these exotic Z' or Higgs bosons with only flavor violating couplings arise.

Summary

