Beyond Ton Scale 0νββ and Future Xe Experiments

Richard Saldanha 19th July 2022

Snowmass Community Summer Study Workshop

Tonne-scale neutrinoless double beta decay experiments will reach sensitivities of ~ 10²⁸ yrs, covering the entire inverted hierarchy and a lot of the normal hierarchy parameter space

To cover ~ 90%* of the remaining parameter space at any given neutrino mass, one needs to reach a $<m\beta\beta>$ sensitivity of ~ 1 meV

For ¹³⁶Xe, that corresponds* to a half-life of roughly 10³⁰ yrs

** Assuming median NME

Kiloton-scale xenon detectors for neutrinoless double beta decay and other new physics searches Physical Review D 104, 112007 (2021)

Explore motivation for extending Xe time-projection chambers to the kton scale, possible avenues for Xe acquisition that avoid existing supply chains, discuss possible detector concepts for liquid and gaseous xenon detectors.

Kiloton-scale xenon detectors for neutrinoless double beta decay and other new physics searches Physical Review D 104, 112007 (2021)

Explore motivation for extending Xe time-projection chambers to the kton scale, possible avenues for Xe acquisition that avoid existing supply chains, discuss possible detector concepts for liquid and gaseous xenon detectors.

Underground Facility Needs

- Space underground for detector + associated vessels and vetos/shields
- Entry access for large components
- Space for assembly of detectors (large clean room areas, cranes, vertical clearance)
- Welding and fabrication facilities (e.g. electroforming facility)
- Clean rooms (dust free, radon reduced air)
- Xenon recovery and storage

LXe Requirements

- Cryogenics
 - Cooling
 - Safety
- Shielding from neutrons

GXe

- Large pressure vessel(s)
 - Safety
- Low radioactive backgrounds

General Underground Facility Needs

More to an underground facility than just the muon flux!

Lab Level:

Available experimental space Maximum dimensions of equipment for access Cleanroom area / class Machining and welding capabilities Assembly space Electroforming facilities Available storage space Seismic safety requirements (would be great to have a unified reference website for all labs)

Location/Cavern specific:

Radon levels in air Neutron flux and spectrum Gamma ray flux and spectrum Dust radioactivity and plateout rate in cleanrooms (would be great to have a set of standardized measurements)

THANK YOU

Underground physics without underground labs: large detectors in solution-mined salt caverns Benjamin Monreal, arXiv:1410.0076

Underground Facility Needs

Space underground for detector + associated vessels and vetos/shields

yr⁻¹1

Counts [keV⁻¹ kt⁻¹

- Access for large vessels
- Xenon recovery and storage
- Clean rooms (dust free, radon reduced air)
- Electroforming copper capability

• 137Xe (neutron capture)