Experimental overview of precision beta-decay measurements (for BSM neutrino physics)

Kyle Leach
Department of Physics | Quantum Engineering | Nuclear Engineering
Colorado School of Mines

and

Facility for Rare Isotope Beams
Michigan State University

A Snowmass view from the NP community
Creating New Physics in the Laboratory with Rare Isotopes

Weak Nuclear Decay is among the MOST sensitive BSM physics probes:
• Pure energy-to-matter conversion: spontaneous matter creation
• Complex, but understood systems (nuclear and atomic)...in most cases
• More than 3500 different systems for case selection
• Exceptional experimental control possible (precision atomic methods, etc.)

K.G. Leach – Precision Beta Decay Experiments for BSM Neutrino Physics
2022 Snowmass Community Summer Study
July 24, 2022

P. Walker, New Scientist Magazine (2011)
The 3x3 Paradigm: A Tale of Two Symmetries

The Standard Model includes an inherent symmetry breaking mechanism that accounts for three generations of quarks and leptons – the weak interaction and mass eigenstates are not equal to each other.

CKM Matrix (Quark Mixing)

\[
\begin{pmatrix}
(d') \\
(s') \\
(b')
\end{pmatrix} =
\begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\begin{pmatrix}
d \\
s \\
b
\end{pmatrix}
\]

If they are indeed complete, these are unitary transformations.

PMNS Matrix (Lepton Mixing)

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\tau1} & U_{\tau2} & U_{\tau3}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

Can be probed via semi-leptonic decay of hadrons.

*There is currently a 4σ tension with the SM unitarity condition for the top row sum.

Can be probed via oscillation and neutrino mass experiments.

*The elements of the PMNS matrix are very different from the CKM matrix → Flavour Puzzle.
Nuclear β Decay as a Probe of BSM Hadronic Physics

Search for Additional Quarks – Superallowed Fermi β Decay

Exotic Weak Currents – β-v Angular Correlations

K.G. Leach – Precision Beta Decay Experiments for BSM Neutrino Physics
2022 Snowmass Community Summer Study
July 24, 2022
Model Independent Probes of BSM *Leptonic* Physics

- **Direct observation of “neutrinoless” mode**
- **Any observation of** $0
\nu\beta\beta$ **is a smoking gun signature of BSM physics (ie. Majorana)**

β/EC decay
- $T_{1/2}$ from a few ms to $\geq 10^{15}$ y
- Observed in > 1000 different nuclei from n to $A \geq 250$

$\beta\beta$ decay
- $T_{1/2} \sim 10^{19–24}$ y
- Observed in only 11 nuclei from 48Ca to 238U

- Energy and momentum conservation
- Model independent search for ANY new physics that couples to the neutrino mass
Momentum and Energy Conservation in Nuclear β Decay

- Decay momentum reconstruction is a simple, model-independent approach to neutrino mass (heavy and light).

- If any new physics couples to the neutrino mass, energies of the other particles in the decay will be altered and can be observed.

β decay provides a sensitive, model independent probe of any new physics in the neutrino sector that couples to their mass states.
Absolute Neutrino Mass Scale via β Endpoint Measurements
Precision Tritium Endpoint Measurement: KATRIN and Project-8

- strong tritium source: 10^{11} decays/s
- < 0.1 cps background level
- ~ 1 eV energy resolution
- 0.1% level understanding of the spectrum shape
- 0.1% level hardware stability controlled over the years

Only 10^{-13} of all decays in last 1 eV

K.G. Leach – Precision Beta Decay Experiments for BSM Neutrino Physics
2022 Snowmass Community Summer Study
July 24, 2022
Precision Tritium Endpoint Experiments - $m_{\bar{\nu}_e}$

Slide Courtesy Thierry Lasserre and Elise Novitski
Where do we stand on Neutrino Masses from Tritium Decay?

Goals:

- Sensitivity to 40 meV/c\(^2\) neutrino mass
- Measure neutrino mass or exclude inverted hierarchy
- Simultaneous sensitivity to active and sterile neutrinos
Precision Holmium EC Decay: ECHO and HOLMES

\[^{163}_{67}\text{Ho} \rightarrow ^{163}_{66}\text{Dy}^* + \nu_e \]

Atomic de-excitation:
- X-ray emission
- Auger electrons
- Coster-Kronig transitions

Calorimetric measurement

\[^{163}_{66}\text{Dy}^* \rightarrow ^{163}_{66}\text{Dy} + E_C \]

- \(\tau_{1/2} \approx 4570 \text{ years} \) (2*10^{11} atoms for 1 Bq)

- \(Q_{EC} = (2.833 \pm 0.030^{\text{stat}} \pm 0.015^{\text{syst}}) \text{ keV} \)

Ab-initio calculations foresee a smooth shape at the endpoint region

Slide Courtesy: Loredana Gastaldo

Precision Holmium EC Decay - m_{ν_e}

60 MMC pixels with about 1 Bq 163Ho: Achievable sensitivity $m(\nu_e) < 20$ eV (95% C.L.)

4-day measurement with 4 pixels loaded with ~0.2 Bq 163Ho

Energy resolution $\Delta E_{\text{FWHM}} = 9.2$ eV

Background level $b < 1.6 \times 10^{-4}$ events/eV/pixel/day

- $Q_{EC} = (2838 \pm 14)$ eV
- $m(\nu_e) < 150$ eV (95% C.L.)

low T microcalorimeters with implanted 163Ho

- 6.5 x 10^{13} atom/det $\rightarrow A_{EC} = 300$ Bq/det
- $\Delta E \approx 1$ eV and $\tau_R \approx 1$ µs

1000 channel array

- 6.5 x 10^{16} 163Ho nuclei $\rightarrow \approx 18$ µg
- 3 x 10^{13} events in 3 years

exposure $N_{\text{det}} \tau_M = 1000 \text{ det} \times 3 \text{ y}$

$A_{EC} = 10$ Bq/det 30 Bq/det 100 Bq/det 300 Bq/det

$\tau_R = 10$ µs $\tau_R = 5$ µs $\tau_R = 3$ µs $\tau_R = 1$ µs

Energy resolution $N_{\text{det}} \tau_M = N_{ev}$

Slide Courtesy Loredana Gastaldo and Angelo Nucciotti
The Future of Neutrino Masses from Ho Decay?

Snowmass LOI: Measuring the electron neutrino mass using the electron capture decay of 163Ho

K.G. Leach – Precision Beta Decay Experiments for BSM Neutrino Physics
2022 Snowmass Community Summer Study
July 24, 2022
Search for Heavy (Mostly Sterile) Neutrino Mass States
Mostly Sterile keV Neutrino Mass States

- Beta decay is particularly sensitive to keV-MeV mass states
- Mass states in this region have $\tau \approx \tau_{\text{universe}}$ and could thus serve as some fraction of the observed DM in our universe
 - Excellent candidates for warm dark matter

Dodelson and Widrow, PRL 72, 17 (1994)
Heavy Neutrino Mass Studies via Coupling to ν_e

- In EC/β^+ and β^- decay, we study the relative coupling of the mass states to ν_e ($\bar{\nu}_e$)
- Momentum is conserved with the mass states, not flavor states

In EC/β^+ and β^- decay, we study the relative coupling of the mass states to ν_e ($\bar{\nu}_e$). Momentum is conserved with the mass states, not flavor states.
Tritium Endpoint Measurements – KATRIN/TRISTAN

Idea:
• Make use of the strong KATRIN tritium source and beamline
• Perform a differential measurement of the full tritium spectrum
• Requires new detector system → TRISTAN detector

S. Mertens et al. JCAP 1502 (2015)
S. Mertens et al, PRD 91 (2015)
First keV-Mass Neutrino Search with KATRIN Data

Search for keV-scale Sterile Neutrinos with first KATRIN Data

K.G. Leach – Precision Beta Decay Experiments for BSM Neutrino Physics

2022 Snowmass Community Summer Study
July 24, 2022
Rare Isotopes in Superconducting Sensors for keV Searches

3H in LiF Bolometer + MMC

YC Lee, LTD-19 2021

241Pu in Au + MMC : Magneto-ν Experiment

Au foil
Au wire
(Thermal couple)
Magnetic sensor
Sample holder
Superconducting Pick-up coil

Phase-0 Data
24 hours, 4 Bq, 1 pixel

PRELIMINARY

K.G. Leach – Precision Beta Decay Experiments for BSM Neutrino Physics
2022 Snowmass Community Summer Study
July 24, 2022
The BeEST Experiment

Rare-isotope implantation at TRIUMF-ISAC

First Limits from “Low-Rate” Phase-II Data

Limits on the Existence of sub-GeV Sterile Neutrinos from the Decay of 7Be in Superconducting Quantum Sensors

Phase-II data from a single 138x138 μm2 STJ counting at low rate (~10 Bq) for 28 days

Recoil spectrum generated by pseudo-degenerate mass states from ~28 days of counting

Example of signal that would be generated by 300 keV neutrino with 1% mixing

K.G. Leach – Precision Beta Decay Experiments for BSM Neutrino Physics
2022 Snowmass Community Summer Study
July 24, 2022
EC Decay of 131Cs - HUNTER

- Elementary EC decay is two-body but reality is not so kind.
- 131Cs \rightarrow 131Xe$^{+2}$ + γ + (2)e^- + ν_e
- Two high-resolution electrostatic spectrometers plus x-ray detectors needed to detect all final state particles

J. Martoff et al., Q. Sci. Tech. 6, 024008 (2021)
Future Projections for Sterile Searches

- Nuclear decay provides a powerful, model-independent probe in the keV – MeV mass range

- Significant progress in measurements over the past 3 years – enabled by quantum sensing

- Experiments poised to increase sensitivity by 5+ orders of magnitude in the next decade

Figure courtesy - W. Pettus for Snowmass Light Sterile Searches White Paper
How do we go Beyond the State-of-the-Art?
Direct Momentum Measurements of Decay Products

Searches for massive neutrinos with mechanical quantum sensors

Daniel Carney,1 Kyle G. Leach,2,3 and David C. Moore4

1Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA
2Department of Physics, Colorado School of Mines, Golden, CO
3Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI
4Wright Laboratory, Department of Physics, Yale University, New Haven, CT

(Dated: July 14, 2022)

2207.05883

100 nm diameter nanosphere, 1% by mass 37Ar, 30 days counting, $m_4 = 750$ keV, 2e-4 mixing

Developments in this area may also allow for light neutrino mass state measurements if a suitably low Q-value decay is found (<0.1 keV)
Momentum reconstruction in EC decay is sensitive to any deviation from the SM recoil signal (e.g. Majoron emission).
Conclusions

• Nuclear β decay is a powerful, model-independent probe of BSM physics

• In particular, any new physics that couples to the neutrino mass can be accessed via precision measurements of the energy or momentum of the other final-state particles

• A number of new technologies have driven this field forward and we are just at the very beginning of exploring this developing research space

• Planned future work with superconducting sensors can expand this work to a larger range of quantum systems for addition BSM physics and applications