Overview of Beyond the Standard Model Reach in Beta-decay Experiments

Vedran Brdar

Overview of BSM Reach in Beta-decay Experiments

Snowmass Summer Meeting, July 2022

Beta Decay

$${}^{A}_{Z}X_{N} \rightarrow {}^{A}_{Z\pm 1} Y_{N\mp 1} + e^{\mp} + \begin{pmatrix} \bar{\nu}_{e} \\ \nu_{e} \end{pmatrix}$$

Transition	Туре	change		
		spin Δl	parity $\Delta \pi$	
Allowed	Fermi	0	No	
	Gamow-Teller	$0,\pm 1 \; (0 \not\rightarrow 0)$	NO	
1 st	non-unique 1st	$0, \pm 1$	Vac	
Forbidden	unique 1st	±2	105	
2nd	non-unique 2nd	± 2	No	
Forbidden	unique 2nd	± 3	110	

$$\begin{split} N(W)dW &= \frac{G_V^2 V_{ud}^2}{2\pi^3} \ F_0(Z,W) \ L_0(Z,W) \ U(Z,W) \ D_{\rm FS}(Z,W,\beta_2) \ R(W,W_0) \ R_N(W,W_0,M) \\ &\times \ Q(Z,W) \ S(Z,W) \ X(Z,W) \ r(Z,W) \ C(Z,W) \ D_C(Z,W,\beta_2) \ pW(W_0-W)^2 \ dW \end{split}$$

- \blacktriangleright an analytical description of the allowed β spectrum shape accurate to a few parts in 10^{-4}
- potential to test BSM

EFT Approach

$$\mathcal{L} \supset -\frac{V_{ud}}{v^2} \Big[(1 + \epsilon_L) \ \bar{e}\gamma_\mu \nu_L \cdot \bar{u}\gamma^\mu (1 - \gamma_5)d + \tilde{\epsilon}_L \bar{e}\gamma_\mu \nu_R \cdot \bar{u}\gamma^\mu (1 - \gamma_5)d \\ + \epsilon_R \bar{e}\gamma_\mu \nu_L \cdot \bar{u}\gamma^\mu (1 + \gamma_5)d + \tilde{\epsilon}_R \bar{e}\gamma_\mu \nu_R \cdot \bar{u}\gamma^\mu (1 + \gamma_5)d \\ + \frac{1}{4}\epsilon_T \ \bar{e}\sigma_{\mu\nu}\nu_L \cdot \bar{u}\sigma^{\mu\nu} (1 - \gamma_5)d + \frac{1}{4}\tilde{\epsilon}_T \ \bar{e}\sigma_{\mu\nu}\nu_R \cdot \bar{u}\sigma^{\mu\nu} (1 + \gamma_5)d \\ + \epsilon_S \bar{e}\nu_L \cdot \bar{u}d + \tilde{\epsilon}_S \bar{e}\nu_R \cdot \bar{u}d - \epsilon_P \ \bar{e}\nu_L \cdot \bar{u}\gamma_5d - \tilde{\epsilon}_P \ \bar{e}\nu_R \cdot \bar{u}\gamma_5d \Big] + \text{h.c.}$$

$$\begin{array}{c} \mathbf{quark-level} \ \mathcal{L} \\ \mathbf{L}_{\text{Lee-Yang}} = -\bar{p}\gamma^\mu n \left(C_V^+ \bar{e}\gamma_\mu \nu_L + C_V^- \bar{e}\gamma_\mu \nu_R\right) - \bar{p}\gamma^\mu \gamma_5 n \left(C_A^+ \bar{e}\gamma_\mu \nu_L - C_A^- \bar{e}\gamma_\mu \nu_R\right) \\ - \ \bar{p}n \left(C_S^+ \bar{e}\nu_L + C_S^- \bar{e}\nu_R\right) - \frac{1}{2} \bar{p}\sigma^{\mu\nu} n \left(C_T^+ \bar{e}\sigma_{\mu\nu}\nu_L + C_T^- \bar{e}\sigma_{\mu\nu}\nu_R\right) \\ + \ \bar{p}\gamma_5 n \left(C_P^+ \bar{e}\nu_L - C_P^- \bar{e}\nu_R\right) + \text{h.c.} \end{array}$$

_ ..

EFT Constraints

$$v^{2} \begin{pmatrix} C_{V}^{+} \\ C_{A}^{+} \\ C_{S}^{+} \\ C_{T}^{+} \end{pmatrix} = \begin{pmatrix} 0.98571(41) \\ -1.25707(55) \\ 0.0001(10) \\ 0.0004(12) \end{pmatrix}$$
$$\begin{pmatrix} \hat{V}_{ud} \\ \epsilon_{R} \\ \epsilon_{S} \\ \epsilon_{T} \end{pmatrix} = \begin{pmatrix} 0.97377(41) \\ -0.010(13) \\ 0.0001(10) \\ 0.0005(13) \end{pmatrix}$$

 precision measurements of beta decays probe similar scales as the LHC

The Cabibbo Angle Anomaly

probing V_{ud} and V_{us} :

- $|V_{ud}|$ from superallowed $0^+ \to 0^+$ β decays $\Rightarrow |V_{ud}|^2 \approx \frac{0.971}{1+\Delta_R^V}$
- $|V_{us}|$ from $K \to \pi I \nu$
- $|V_{us}/V_{ud}|$ by comparing $K \to \mu\nu$ and $\pi \to \mu\nu$

Overview of BSM Reach in Beta-decay Experiments

Beta Decay and CDF Anomaly

	\mathcal{O}_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$		
	\mathcal{O}_{HD}	$\left H^{\dagger}D_{\mu}H ight ^{2}$		
	$\mathcal{O}_{Hl}^{(3)}$	$\left(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H\right)\left(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r}\right)$		
	$\mathcal{O}_{Hq}^{(3)}$	$\left(H^{\dagger}i \overset{\leftrightarrow}{D}{}^{I}_{\mu} H\right) \left(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}\right)$		
	\mathcal{O}_{ll}	$\left(\bar{l}_p\gamma_\mu l_r\right)\left(\bar{l}_s\gamma^\mu l_t\right)$		
$= v^{2} \frac{s_{w}c_{w}}{s_{w}^{2} - c_{w}^{2}} \left[2C_{HWB} + \frac{c_{w}}{2s_{w}}C_{HD} + \frac{s_{w}}{c_{w}} \left(2C_{Hl}^{(3)} - C_{ll} \right) \right]$				

 global analyses of EW precision observables in SMEFT framework can explain W boson mass anomaly but it predicts % level violation of Cabibbo unitarity

Neutron Decay Anomaly

- ▶ Dark Matter interpretation? 1% Br into non-proton final state required
- ▶ 937.900 MeV < m_{DM} < 938.783 MeV; constraints from neutron stars

Fornal, Grinstein, 1801.01124 Rajendran, Ramani, 2008.06061 Tang et al., 1802.01595

Emission of New Light Bosons at KATRIN

complementary approach to accessing low energy new physics
 limits are not competitive with cosmology and high-energy lab searches

keV-scale Sterile Neutrino (DM) at KATRIN

- KATRIN will reach $\sin^2 2\theta \sim 10^{-7}$
- DM in this region of parameter space?
- (i) Multicomponent DM or change ν_s decay rate
 - (ii) lower $T_{\rm RH}$ to suppress production

Overview of BSM Reach in Beta-decay Experiments

Snowmass Summer Meeting, July 2022

Constraints on Sterile Neutrino Across the Scales

complementary constraints from beta decays of ²⁰F, ³⁵S, ⁴⁵Ca...

► KATRIN/TRISTAN and Project 8 will improve these limits

Constraints on $C\nu B$ Overdensity

$$\blacktriangleright \ \nu_e + N_Z^A \Longrightarrow N_{Z+1}^A + e^-$$

- standard $C\nu B$ density $n_0 = 56 \,\mathrm{cm}^{-3}$
- ► KATRIN constraints 10¹¹ n₀
- improvements are expected in future form PTOLEMY collaboration
- new probe of relic neutrino clustering using cosmogenic neutrinos
- new physics in the form of neutrino self-interactions required (2201.00939)

eV-scale Sterile Neutrino

- measurements and theoretical calculations of beta decay spectra for a number of radionuclides have reached precision that makes this process a powerful probe of new physics
- scenarios that can be tested include heavy new physics via EFTs, dark matter and sterile neutrinos
- upcoming measurements from KATRIN and Project 8 will further improve the existing constraints
- reactor anomaly is disappearing; further efforts in flux calculation and data collection are important for short baseline program at Fermilab