Beyond the Standard Model effects on neutrino flavor Experimental overview and prospects: High energies: neutrinos above the TeV scale To be published, ArXiv:2203.10811

> Teppei Katori King's College London Snowmass21 workshop, Seattle, July 24, 2022

> > 22/07/24



### Beyond the Standard Model effects on Neutrino Flavor

Contents

| 1 | Intr                                                                                      | oduction                                                                         | 4   |  |  |  |  |
|---|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----|--|--|--|--|
| 2 | 2 Theoretical aspects<br>2.1 New physics from the existence of additional neutrino states |                                                                                  |     |  |  |  |  |
|   | 2.1                                                                                       | 2.1.1 Neutrino oscillations in presence of heavy sterile neutrinos               | 6   |  |  |  |  |
|   |                                                                                           | 21.2 Neutrino oscillations in presence of light sterile neutrinos                | 7   |  |  |  |  |
|   |                                                                                           | 21.3 Normalization of the oscillation probability                                | 7   |  |  |  |  |
|   |                                                                                           | 214 Present constraints on non-unitarity parameters                              | 8   |  |  |  |  |
|   |                                                                                           | 2.1.5 Neutrino oscillations in the presence of Large Extra Dimensions (LED)      | a a |  |  |  |  |
|   | 22                                                                                        | New interactions in the neutrino sector                                          | 11  |  |  |  |  |
|   | 2.2                                                                                       | 2.2.1 General effective interactions between neutrinos: the charged-current case | 11  |  |  |  |  |
|   |                                                                                           | 2.2.1 Scheral-Current Non-Standard neutrino Interactions                         | 12  |  |  |  |  |
|   |                                                                                           | 2.2.2 Nedel huilding aspects: heavy vs light mediators                           | 15  |  |  |  |  |
|   |                                                                                           | 2.2.4 New neutrino interactions with light mediators                             | 16  |  |  |  |  |
|   |                                                                                           | 2.2.4 New field find interactions with light field ators                         | 18  |  |  |  |  |
|   |                                                                                           | 2.2.5 Elective operations with dark matter                                       | 10  |  |  |  |  |
|   | 23                                                                                        | Neutrino decov                                                                   | 21  |  |  |  |  |
|   | 2.5                                                                                       | 2.3.1 Theoretical Formalism - Invisible and Visible Decay                        | 21  |  |  |  |  |
|   |                                                                                           | 2.3.1 Theoretical Formalism - invisible and Visible Decay                        | 21  |  |  |  |  |
|   |                                                                                           | 2.3.2 Eutrent Dounds - Invisible and Visible Decay                               | 24  |  |  |  |  |
|   | 24                                                                                        | Tests of fundamental physics principles                                          | 24  |  |  |  |  |
|   | 2.7                                                                                       | 2 A 1 CPT violation                                                              | 25  |  |  |  |  |
|   |                                                                                           | 2.4.1 Crentz-Invariance Violation                                                | 20  |  |  |  |  |
|   |                                                                                           | 2.4.3     Quantum Decoherence                                                    | 30  |  |  |  |  |
| 3 | Ехр                                                                                       | erimental overview and prospects                                                 | 31  |  |  |  |  |
|   | 3.1                                                                                       | Low energies: neutrino experiments below the GeV                                 | 32  |  |  |  |  |
|   |                                                                                           | 3.1.1 Solar and reactor neutrinos                                                | 32  |  |  |  |  |
|   |                                                                                           | 3.1.2 Exploring new avenues                                                      | 33  |  |  |  |  |
|   |                                                                                           | 3.1.3 Supernova neutrinos                                                        | 35  |  |  |  |  |
|   | 3.2                                                                                       | Medium energies: neutrinos with energies between the GeV and TeV scales          | 36  |  |  |  |  |
|   |                                                                                           | 3.2.1 Past and Contemporary Neutrino Beam Experiments                            | 36  |  |  |  |  |
|   |                                                                                           | 3.2.2 Future and Potential Neutrino Beam Experiments                             | 38  |  |  |  |  |
|   |                                                                                           | 3.2.3 Neutrinos from colliders: FASERvnd SND@LHC                                 | 40  |  |  |  |  |
|   |                                                                                           | 3.2.4 Atmospheric neutrinos                                                      | 41  |  |  |  |  |
|   | 3.3                                                                                       | High energies: neutrinos above the TeV scale                                     | 43  |  |  |  |  |
|   |                                                                                           | 3.3.1 High-energy atmospheric neutrinos                                          | 46  |  |  |  |  |
|   |                                                                                           | 3.3.2 High-energy astrophysical neutrinos                                        | 47  |  |  |  |  |
|   |                                                                                           | 3.3.3 Extremely-high-energy astrophysical neutrinos                              | 50  |  |  |  |  |
| 4 | Sun                                                                                       | nmary and outlook                                                                | 52  |  |  |  |  |
| 5 | Ack                                                                                       | nowledgements                                                                    | 54  |  |  |  |  |
|   |                                                                                           | 22/07/24                                                                         | 2   |  |  |  |  |

SNOWMASS WHITE PAPER: BEYOND THE STANDARD MODEL EFFECTS ON NEUTRINO FLAVOR

> SUBMITTED TO THE PROCEEDINGS OF THE US COMMUNITY STUDY ON THE FUTURE OF PARTICLE PHYSICS (SNOWMASS 2021)

C. A. ARGÜELLES<sup>\*1</sup>, G. BARENBOIM<sup>\*2</sup>, M. BUSTAMANTE<sup>\*3</sup>, P. COLOMA<sup>†\*4</sup>, P. B. DENTON<sup>\*5</sup>,
I. ESTEBAN<sup>\*6,7</sup>, Y. FARZAN<sup>\*8</sup>, E. FERNÁNDEZ MARTÍNEZ<sup>\*4,9</sup>, D. V. FORENO<sup>†\*10</sup>, A. M. GAGO<sup>\*11</sup>,
T. KATORI<sup>†\*12</sup>, R. LEHNERT<sup>\*13,14</sup>, M. ROSS-LONERGAN<sup>\*15</sup>, A. M. SULIGA<sup>\*16,17</sup>, Z. TABRIZI<sup>\*18</sup>,
L. ANCHORDOQUI<sup>19</sup>, K. CHAKRABORTY<sup>20</sup>, J. CONRAD<sup>21</sup>, A. DAS<sup>22</sup>, C. S. FONG<sup>23</sup>,
B. R. LITTLEJOHN<sup>24</sup>, M. MALTONI<sup>4</sup>, D. PARNO<sup>25</sup>, J. SPITZ<sup>26</sup>, J. TANG<sup>27</sup>, AND S. WISSEL<sup>28</sup> <sup>1</sup>Department of Physics & Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA <sup>2</sup>Departament de Física Teòrica and IFIC, Universitat de València-CSIC, E-46100 Burjassot, Spain <sup>3</sup>Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark <sup>4</sup>Instituto de Fisica Teórica UAM-CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain <sup>5</sup> High Energy Theory Group, Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA <sup>6</sup> Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, Columbus, OH 43210, USA <sup>7</sup>Department of Physics, Ohio State University, Columbus, OH 43210, USA <sup>8</sup> School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran <sup>9</sup>Departamento de Fisica Teórica, Universidad Autónoma de Madrid, 28049 Madrid, Spain <sup>10</sup>Universidad de Medellín, Carrera 87 No 30 - 65 Medellín, Colombia <sup>11</sup>Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Apartado 1761, Lima, Perú <sup>12</sup>Department of Physics, King's College London, WC2R 2LS London, UK <sup>13</sup>Department of Physics, Indiana University, Bloomington, IN 47405, USA <sup>14</sup>Indiana University Center for Spacetime Symmetries, Bloomington, IN 47405, USA <sup>15</sup>Department of Physics, Columbia University, New York, NY 10027, USA <sup>16</sup>Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA <sup>17</sup>Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA <sup>18</sup>Department of Physics, Northwestern University, Evanston, IL 60208, USA <sup>19</sup>Lehman College, City University of New York, Bronx, NY 10468, USA <sup>20</sup>Physical Research Laboratory, University Area, Ahmedabad, Gujarat 380009, India <sup>21</sup>Massachusetts Institute of Technology, Cambridge, MA 02139, USA <sup>22</sup>Hokkaido University, Sapporo, Hokkaido 060-0808, Japan <sup>23</sup>Universidade Federal do ABC, Santo André - SP, 09210-580, Brazil <sup>24</sup>Illinois institute of Technology, Chicago, IL 60616, USA <sup>25</sup>Carnegie Mellon University, Pittsburgh, PA 15213, USA <sup>26</sup> University of Michigan, Ann Arbor, MI 48109, USA <sup>27</sup>Sun Yat-sen University, Guangzhou, 510275, P. R. China <sup>28</sup> Pennsulvania State University, University Park, PA 16802, USA



### Beyond the Standard Model effects on Neutrino Flavor

Contents

5 Acknowledgements

|                                         | Snowmass White Paper:<br>Beyond the Standard Model effects on Neutrino Flavor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>2 | Intr<br>The<br>2,1                            | orecical aspects         New physics from the existence of additional neutrino states         2.1.1       Neutrino oscillations in presence of heavy sterile neutrinos         2.1.2       Neutrino oscillations in presence of light sterile neutrinos |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5                                       | SUBMITTED TO THE PROCEEDINGS OF THE US COMMUNITY STUDY<br>ON THE FUTURE OF PARTICLE PHYSICS (SNOWMASS 2021)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                                               | <ul> <li>2.1.3 Normalization of the oscillation probability</li> <li>2.1.4 Present constraints on non-unitarity parameters</li> <li>2.1.5 Neutrino oscillations in the presence of Large Extra Dimensions (LEE</li> </ul>                               |
| arXiv:2203.10811v1 [hep-ph] 21 Mar 2022 | <ul> <li>C. A. ARGÜELLES<sup>*1</sup>, G. BARENBOIM<sup>*2</sup>, M. BUSTAMANTE<sup>*3</sup>, P. COLOMA<sup>†*4</sup>, P. B. DENTON<sup>*5</sup>,</li> <li>I. ESTEBAN<sup>*6,7</sup>, Y. FARZAN<sup>*8</sup>, E. FERNÁNDEZ MARTÍNEZ<sup>*4,9</sup>, D. V. FORERO<sup>†*10</sup>, A. M. GAGO<sup>*11</sup></li> <li>T. KATORI<sup>+12</sup>, R. LEHNERT<sup>*13,14</sup>, M. ROSS-LONERGAN<sup>*15</sup>, A. M. SULIGA<sup>*16,17</sup>, Z. TABRIZI<sup>*18</sup>,</li> <li>L. ANCHORDOQU<sup>19</sup>, K. CHARRABORTY<sup>20</sup>, J. CONRAD<sup>21</sup>, A. DAS<sup>22</sup>, C. S. FONG<sup>23</sup>,</li> <li>B. R. LITTLEJOHN<sup>24</sup>, M. MALTONI<sup>4</sup>, D. PARNO<sup>25</sup>, J. SPITZ<sup>26</sup>, J. TANG<sup>27</sup>, AND S. WISSEL<sup>28</sup></li> <li><sup>1</sup>Department of Physics &amp; Laboratory for Particle Physics cand Cosmology, Harvard University, Cambridge, MA 02138, USA</li> <li><sup>2</sup>Departament de Física Teòrica and IFIC, Universitat de València-CSIC, E-46100 Burjassot, Spain</li> <li><sup>3</sup>Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark</li> <li><sup>4</sup>Instituto de Física Teòrica UAM-CSIC, Universidad Autónoma de Madrid, 28049 Madrid, Spain</li> <li><sup>4</sup>Instituto de Física Teòrica, UNIVES (CCAPP), Ohio State University, Columbus, OH 43210, USA</li> <li><sup>6</sup>Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, Columbus, OH 43210, USA</li> <li><sup>8</sup>School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Bot 19393-5531, Tehran, Iran</li> <li><sup>9</sup>Department of Physics, Indiana University, Columbus, OH 43210, USA</li> <li><sup>13</sup>Department of Physics, Indiana University, Bloomington, IN 47405, USA</li> <li><sup>14</sup>Indiana University Collecter for Spacetime Symmetries, Bloomington, IN 47405, USA</li> <li><sup>15</sup>Department of Physics, University of California Berkeley, Derkeley, CA 9,720, USA</li> <li><sup>15</sup>Department of Physics, University of New York, NY 10027, USA</li> <li><sup>15</sup>Department of Physics, Northwestern University, Reanston, IL 60208, USA</li> <li><sup>16</sup>Department of Physics, University of Vew York, Bronz, NY 10468, USA</li> <li><sup>16</sup>Department of Physics, Northwestern University, Basonington, IN 47405, USA</li> <l< td=""><td>3</td><td>2.2<br/>2.3<br/>2.4<br/>Exp<br/>3.1<br/>3.2<br/>3.3</td><td>New interactions in the neutrino sector</td></l<></ul> | 3      | 2.2<br>2.3<br>2.4<br>Exp<br>3.1<br>3.2<br>3.3 | New interactions in the neutrino sector                                                                                                                                                                                                                 |



22/07/24

## Beyond the Standard Model effects on Neutrino Flavor

### Natural place to look for new physics

- 1. Longest propagation distance (> pc)
- 2. Direct highest energy particles (> 10TeV)
- 3. Quantum mixing

"Neutrino flavour effect" covers many topics in particle physics!

### We want to discover any of these!

- Lorentz and CPT violation
- Long-range interaction
- Dark matter-neutrino interaction
- Dark energy-neutrino interaction
- Neutrino self-interaction
- Non-standard interaction
- Neutrino decay
- Neutrino decoherence
- Sterile neutrinos
- Extra dimension, etc





## Astrophysical neutrino flavour physics

### Natural place to look for new physics

- 1. Longest propagation distance (> pc)
- 2. Direct highest energy particles (> 10TeV)
- 3. Quantum mixing

Neutrino mixing (neutrino frontier)

Astrophysical Neutrino<br/>Flavor PhysicsHighest energy<br/>(energy frontier)Astrophysical<br/>scale<br/>(cosmic frontier)



## Astrophysical neutrino flavour physics

Flavour information is sensitive to the leading order of new physics

$$H = H_{SM} + H_{BSM}$$
$$P = |H_{SM}|^2 + |H_{SM} \cdot H_{BSM}| + |H_{BSM}|^2 + \cdots$$

We need high statistics flavour data to look for new physics



## Astrophysical neutrino flavour physics

Flavour information is sensitive to the leading order of new physics

$$H = H_{SM} + H_{BSM}$$

$$P = |H_{SM}|^2 + |H_{SM} \cdot H_{BSM}| + |H_{BSM}|^2 + \cdots$$

Standard neutrino Hamiltonian in vacuum

$$H_{SM} \sim \frac{m^2}{2E}$$

In highest energy, SM term is suppressed, BSM term becomes relatively larger

$$P = |H_{SM}|^2 + |H_{SM} \cdot H_{BSM}| + |H_{BSM}|^2 + \cdots$$

Higher-energy neutrinos have better sensitivity to new physics



Song et al, JCAP04(2021)054

## Astrophysical neutrino flavour physics

The goal is to find

$$P \neq P_{SM}(\Delta m^2 \pm \delta \Delta m^2, \theta \pm \delta \theta)$$

Sensitivity is improved by better oscillation parameter measurements





22/07/24

Song et al, JCAP04(2021)054

## Astrophysical neutrino flavour physics

Astrophysical neutrino flavour simulation depends on astrophysical neutrino flavour assumption at the source

$$f_{\beta,\bigoplus} = \sum_{\beta}^{3} P_{\alpha \to \beta} (H_{SM, H_{BSM}}) \times f_{\alpha,S}$$

New physics sensitivity depends on astrophysical neutrino production model





#### IceCube, PRD104(2021)022002, ArXiv:2011:03560

## Astrophysical neutrino flavour physics (2022)

IceCube data allows almost all astrophysical neutrino flavour ratio

- New physics limits have astrophysical neutrino production model dependencies

$$h_{eff} \sim \frac{1}{2E} U^{\dagger} M^{2} U + a_{\alpha\beta}^{(3)} - E c_{\alpha\beta}^{(4)} + E^{2} a_{\alpha\beta}^{(5)} - E^{3} c_{\alpha\beta}^{(6)} \cdots$$



06

Bayes Factor > 10

Bayes Factor > 31.6

0.8

Key

 $\mathbb{Re}(\overset{(3)}{a}_{\mu\tau})$  atm. limit (90%)

 $(0:0:)^{s}$ 

1.0

## Summary

Astrophysical neutrino flavour physics is a cross-frontier topic.

- Neutrino frontier, high-energy frontier, cosmic frontier

Very high discovery potential is supported by an interdisciplinary study

- Theory & experiment, particle physics & astrophysics



## Summary

Astrophysical neutrino flavour physics is a cross-frontier topic.

- Neutrino frontier, high-energy frontier, cosmic frontier

Very high discovery potential is supported by an interdisciplinary study

- Theory & experiment, particle physics & astrophysics

High-precision oscillation measurement

Astrophysical Neutrino Flavor Physics

High statistics Astrophysical flavour data neutrino production model



## Summary

Astrophysical neutrino flavour physics is a cross-frontier topic.

- Neutrino frontier, high-energy frontier, cosmic frontier

Very high discovery potential is supported by an interdisciplinary study

- Theory & experiment, particle physics & astrophysics

### Neutrino telescopes

High-Energy (IceCube, ANTARES, KM3NeT, P-ONE, Baikal-GVD, etc) Ultra-high-energy (IceCube-Gen2, TAMBO, Trinity, RET-N, ARIANNA, RNO-G, GRAND, POEMMA, BEACON, PUEO, Trinity, EUSO-SPB2, Auger/GCOS, etc)

## High-precision oscillation measurement

### **Oscillation experiments**

Beam (T2K, NOvA, DUNE, Hyper-Kamiokande) Atmospheric (Super-Kamiokande, DUNE, Hyper-Kamiokande, IceCube-Upgrade, KM3NeT, INO) Reactor (JUNO), etc

# Astrophysical Neutrino Flavor Physics

High statistics Astrophysical Te flavour data neutrino production model

# Multi-messenger astronomy

Optics (Radio, infrared, VIS, UV, Xray, γ-ray) Comic rays (Auger, TA, GCOS, etc) Gravitational wave (LIGO, VARGO, KAGRA, LIGO-India, Einstein Telescope, LISA, etc)



Backup



## Beyond the Standard Model effects on Neutrino Flavor

### Fundamental physics with high-energy cosmic neutrinos today and in the future

- Natural place to look for new physics
- 1. Longest propagation distance (> pc)
- 2. Direct highest energy particles (> 10TeV)
- 3. Quantum mixing





## Non-standard interactions

Atmospheric neutrinos cover ~100MeV - 20 TeV (conventional) coming from all direction (diffuse). However, direction is related to the propagation distance.

→ They are the highest energy particles (~20 TeV) with the longest baseline (12700km) propagating the high-density material (~13g/cm<sup>3</sup>) on Earth.



$$h_{eff} \sim \frac{1}{2E} M^2 + V_{CC}, \quad P_{\alpha\beta} = \left| \left\langle \nu_{\alpha} \left| U(h_{eff}, t) \right| \nu_{\beta} \right\rangle \right|^2$$
$$M^2 = \begin{pmatrix} m_{ee}^2 & m_{e\mu}^2 & m_{\tau e}^2 \\ \left( m_{e\mu}^2 \right)^* & m_{\mu\mu}^2 & m_{\mu\tau}^2 \\ \left( m_{\tau e}^2 \right)^* & \left( m_{\mu\tau}^2 \right)^* & m_{\tau\tau}^2 \end{pmatrix}, \quad V_{CC} = \begin{pmatrix} \sqrt{2}G_F n_e & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Non-standard interaction limits in IceCube is order  $\sim 10^{-25}$  GeV

cf) The highest precision hydrogen 1S-2S transition (PRL107(2011)203001) Fractional frequency uncertainty ~  $4x10^{-15} \rightarrow$  new physics sensitivity ~ $10^{-23}$  GeV



## Flavor new physics search with effective operators

Standard Model Extension (SME) is an effective field theory to look for Lorentz violation

Standard Model New physics 
$$L = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\bar{\psi}\psi + \bar{\psi}\gamma^{\mu}a_{\mu}\psi + \bar{\psi}\gamma^{\mu}c_{\mu\nu}\partial^{\nu}\psi \cdots$$

Effective Hamiltonian can be written from here



Astrophysical neutrino flavour sensitivity of dim-6 operator goes beyond the natural scale  $c^{(6)} \sim \frac{1}{M_{Planck}^2} \sim 10^{-38} GeV^{-2}$ , first time in any known scientific system



## Flavor new physics search with effective operators

Neutrino oscillation formula is written with mixing matrix elements and eigenvalues

$$P_{\alpha \to \beta}(E,L) = 1 - 4\sum_{i>j} Re\left(V_{\alpha i}^* V_{\beta i}^* V_{\alpha j} V_{\beta j}\right) \sin^2\left(\frac{\lambda_i - \lambda_j}{2}L\right) + 2\sum_{i>j} Im\left(V_{\alpha i}^* V_{\beta i}^* V_{\alpha j} V_{\beta j}\right) \sin\left(\left(\lambda_i - \lambda_j\right)L\right)$$

However, astrophysical neutrinos propagate  $O(100Mpc) \rightarrow lost$  coherence

$$P_{\alpha \to \beta}(E, \infty) \sim 1 - 2 \sum_{i>j} Re\left(V_{\alpha i}^* V_{\beta i}^* V_{\alpha j} V_{\beta j}\right) = \sum_i |V_{\alpha i}|^2 |V_{\beta i}|^2$$

Astrophysical neutrino flux of flavour  $\alpha$  at production is  $\phi^p_{\alpha}(E) \sim \phi^P_{\alpha} \cdot E^{-\gamma}$ . Since it's low statistics, we consider energy-averaged flavour composition  $\beta$  on Earth

$$\bar{\phi}_{\beta}^{\oplus} = \frac{1}{\Delta E} \int_{\Delta E} \sum_{\alpha} P_{\alpha \to \beta}(E, \infty) \, \phi_{\alpha}^{p}(E) dE$$

We take the fraction of this for each flavour.

$$f^{\oplus}_{\beta} = \frac{\bar{\phi}^{\oplus}_{\beta}}{\sum_{e,\mu,\tau} \bar{\phi}^{\oplus}_{\gamma}}$$



## High-energy astrophysical neutrino flavour

High-energy particles (>60 TeV) propagating a long distance (>100 Mpc) - Neutrinos can probe new physics in the universe



IceCube, PRL114(2015)171102, Astro.J.809:98(2015), PRD99(2019)032004, ArXiv:2011:03560



## HESE 7.5-yr flavor ratio (2018)





We are mainly testing scenarios where we assume astrophysical neutrino productions are dominated by  $\nu_e$  or  $\nu_\mu$ 

#### IceCube, Nature Physics 14 (2018) 961 Mewes, Nature 560 (2018) 316

## Neutrino interferometry – Atmospheric neutrinos

| dim. | method                            | type                         | sector   | limits                                                                                                                                                                                                                           | ref.      |
|------|-----------------------------------|------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 3    | CMB polarization                  | astrophysical                | photon   | $\sim 10^{-43} { m GeV}$                                                                                                                                                                                                         | [6]       |
|      | He-Xe comagnetometer              | tabletop                     | neutron  | $\sim 10^{-34}~{ m GeV}$                                                                                                                                                                                                         | [10]      |
|      | torsion pendulum                  | tabletop                     | electron | $\sim 10^{-31}~{ m GeV}$                                                                                                                                                                                                         | [12]      |
|      | muon g-2                          | accelerator                  | muon     | $\sim 10^{-24}~{ m GeV}$                                                                                                                                                                                                         | [13]      |
|      | neutrino oscillation              | $\operatorname{atmospheric}$ | neutrino | $ \operatorname{Re}(\mathring{a}_{\mu\tau}^{(3)}) ,  \operatorname{Im}(\mathring{a}_{\mu\tau}^{(3)})  \stackrel{< 2.9 \times 10^{-24} \text{ GeV } (99\% \text{ C.L.})}{< 2.0 \times 10^{-24} \text{ GeV } (90\% \text{ C.L.})}$ | this work |
| 4    | GRB vacuum birefringence          | astrophysical                | photon   | $\sim 10^{-38}$                                                                                                                                                                                                                  | [7]       |
|      | Laser interferometer              | LIGO                         | photon   | $\sim 10^{-22}$                                                                                                                                                                                                                  | [8]       |
|      | Sapphire cavity oscillator        | tabletop                     | photon   | $\sim 10^{-18}$                                                                                                                                                                                                                  | [5]       |
|      | Ne-Rb-K comagnetometer            | tabletop                     | neutron  | $\sim 10^{-29}$                                                                                                                                                                                                                  | [11]      |
|      | trapped Ca <sup>+</sup> ion       | tabletop                     | electron | $\sim 10^{-19}$                                                                                                                                                                                                                  | [14]      |
|      | neutrino oscillation              | atmospheric                  | neutrino | $ \operatorname{Re}(\mathring{c}^{(4)}_{\mu\tau}) ,  \operatorname{Im}(\mathring{c}^{(4)}_{\mu\tau})  \stackrel{< 3.9 \times 10^{-28}}{< 2.7 \times 10^{-28}} (90\% \text{ C.L.}) \stackrel{< 0.1}{< 2.7 \times 10^{-28}}$       | this work |
| 5    | GRB vacuum birefringence          | astrophysical                | photon   | $\sim 10^{-34}~{ m GeV^{-1}}$                                                                                                                                                                                                    | [7]       |
|      | ultra-high-energy cosmic ray      | astrophysical                | proton   | $\sim 10^{-22}$ to $10^{-18}$ GeV <sup>-1</sup>                                                                                                                                                                                  | [9]       |
|      | neutrino oscillation              | $\operatorname{atmospheric}$ | neutrino | $\frac{\operatorname{Re}(\mathring{a}_{\mu\tau}^{(5)}) ,  \operatorname{Im}(\mathring{a}_{\mu\tau}^{(5)}) }{< 1.5 \times 10^{-32} \text{ GeV}^{-1} (99\% \text{ C.L.})} $                                                        | this work |
| 6    | GRB vacuum birefringene           | astrophysical                | photon   | $\sim 10^{-31} { m GeV}^{-2}$                                                                                                                                                                                                    | [7]       |
|      | ultra-high-energy cosmic ray      | astrophysical                | proton   | $\sim 10^{-42}$ to $10^{-35}$ GeV <sup>-2</sup>                                                                                                                                                                                  | [9]       |
|      | gravitational Cherenkov radiation | astrophysical                | gravity  | $\sim 10^{-31} { m GeV}^{-2}$                                                                                                                                                                                                    | [15]      |
|      | neutrino oscillation              | $\operatorname{atmospheric}$ | neutrino | $\frac{ \hat{c}_{\mu\tau}^{(6)} }{   \mathbf{Im}(\hat{c}_{\mu\tau}^{(6)})  } \leq 1.5 \times 10^{-36} \text{ GeV}^{-2} (99\% \text{ C.L.}) \leq 9.1 \times 10^{-37} \text{ GeV}^{-2} (90\% \text{ C.L.})$                        | this work |
| 7    | GRB vacuum birefringence          | astrophysical                | photon   | $\sim 10^{-28} { m GeV^{-3}}$                                                                                                                                                                                                    | [7]       |
|      | neutrino oscillation              | $\operatorname{atmospheric}$ | neutrino | $\frac{\operatorname{Re}(\mathring{a}_{\mu\tau}^{(7)}) ,  \operatorname{Im}(\mathring{a}_{\mu\tau}^{(7)}) }{< 3.6 \times 10^{-41} \text{ GeV}^{-3} (99\% \text{ C.L.})} $                                                        | this work |
| 8    | gravitational Cherenkov radiation | astrophysical                | gravity  | $\sim 10^{-46} { m GeV^{-4}}$                                                                                                                                                                                                    | [15]      |
|      | neutrino oscillation              | $\operatorname{atmospheric}$ | neutrino | $\frac{ \operatorname{Re}(\hat{c}_{\mu\tau}^{(8)}) }{ \operatorname{Im}(\hat{c}_{\mu\tau}^{(8)}) } \leq 5.2 \times 10^{-45} \text{ GeV}^{-4} (99\% \text{ C.L.}) \leq 1.4 \times 10^{-45} \text{ GeV}^{-4} (90\% \text{ C.L.})$  | this work |

TABLE I: Comparison of attainable best limits of SME coefficients in various fields.



IceCube atmospheric neutrino limit,  $c^{(6)} < 10^{-36} GeV^{-2}$ This is close to the target signal region,  $c^{(6)} \sim 10^{-38} GeV^{-2}$ 

## Neutrino interferometry – Atmospheric neutrinos

Strong limits on many parameters but they depend on the source flavour assumptions.

Substantial limits for  $\tau \tau \xi$ parameters are obtained through quantum Zeno effect

dim coefficient limit (BF> 10)

 $2 \times 10^{-26} \text{ GeV}$ 

 $2 \times 10^{-31}$ 

 $2 \times 10^{-37} \text{ GeV}^{-1}$ 

 $3\times 10^{-42}~{\rm GeV^{-2}}$ 

 $3 \times 10^{-47} \text{ GeV}^{-3}$ 

 $2\times 10^{-52}~{\rm GeV^{-4}}$ 

 $\operatorname{Re}(\mathring{a}_{\tau\tau}^{(3)})$ 

 $\operatorname{Re}(\mathring{c}_{\tau\tau}^{(4)})$ 

 $\operatorname{Re}(\mathring{a}_{\tau\tau}^{(5)})$ 

 $\operatorname{Re}(\mathring{c}_{\tau\tau}^{(6)})$ 

 $\operatorname{Re}(\mathring{a}_{\tau\tau}^{(7)})$ 

Re ( $\mathring{c}_{\tau\tau}^{(8)}$ )





3

4

5

6

7

8

## Neutrino flavor ratio ( $v_e : v_\mu : v_\tau$ )



## Neutrino flavor ratio ( $v_e : v_\mu : v_\tau$ )



## Neutrino flavor ratio ( $v_e : v_\mu : v_\tau$ )



## Neutrino flavor ratio ( $v_e : v_u : v_\tau$ )

Astrophysical neutrino production mechanism is not known  $\rightarrow$  production flavour ratio is not known 0.01.0

Flavour ratio on Earth is different due to mixing by neutrino masses

All possible flavour ratio is confined in a small space

e.g.) New physics just below the limit can produce any flavour ratio



