

Cloud and FPGAs in Physics and HPC

from Data Acquisition to the Cloud

Andrew Putnam

July 22, 2022

Community Summer Study

SN WMASS

July 17-26 2022, Seattle

FPGAs in Cosmology

EOR Science can be done with a paperclip and a supercomputer

-- Don C. Backer

Cosmologists often refer to their telescopes as "software telescopes"

FPGAs in Physics Applications

Nhan Tran (FermiLab), Philip Harris (MIT), Javier Duarte (UCSD)

Teaching Old Technology New Tricks

- Physicists are familiar for data acquisition and near-sensor processing
- You're going to have an FPGA developer on the project...
- But what else can you do with FPGAs?

© Microsoft Corporation Azure

Catapult: Long, Fruitful FPGA Investment

Catapult v1: Mt Granite

Distributed solution Integrated with WCS (OCP) 1.0

v2. Pikes Peak

Integrated Bing + Azure design Bump-in-the-wire introduced

Azure AccelNet Unveiled

Azure production launch Al Supercomputer demo

Project BrainWave / Storm Peak

Real-Time Al First 3rd Party FPGA Service

Azure Databox Edge On-Site Inference

Pre-History:

May 2009: Bing Launched Feb 2010: Azure Launched

Dec 2010: Catapult concept

2011 2012

2015

2016

2018

2019

2013

2014

2017

v0: Research POC

Built v0 board w/6 Xilinx FPGAs 30k lines of Bing code on FPGA

1632 servers deployed Bing IndexServe accelerated

MICROSOFT SUPERCHARGES BING SEARCH WITH PROGRAMMABLE CHIPS

v2 Production and ramp FPGAs reach production

Deployed in all new servers

Catapult v3: Longs Peak

DNN Platform for Bing 50Gb w/ integrated NIC

Overlake: Celestial Peak 100G w/ SoC Networking + Storage

Catapult: Long, Fruitful FPGA Investment

Cloud DNNs

Systolic Arrays and Feature Extraction

ikes Peak rated

2014

5-in-th

Azure AccelNet Unveiled

Azure production launch er demo

SDN Offload

Project BrainWave / Storm Peak

Real-Time Al

First 3rd Party FPGA Service

Azure Databox Edge

On-Site inference

Pre-History:

May 2009: Bing Launched

Feb 2010: Azure Launched Dec 2010: Catapult concept

Designed for Decision Tree

on Tree 2013

Scoring

RE ON A
REI ROURAMMADER COM OTER CHIP

2015

2016

2017

Al at the Edge

v0: Research POC

Built 10 board w/6 Yilinx FPGAs 30k lines of Bing code on FPGA

v1: Scale Pilot

1632 servers deployed Bing IndexServe accelerated

MICROSOFT SUPERCHARGES BING SEARCH WITH PROGRAMMABLE CHIPS

v2 Production and rampFPGAs reach production
Deployed in all new servers

Catapult v3 DNN Platfor 50Gb w/ int

Hypervisor Offload

Peak

© Microsoft Corporation

Dominant state-of-the-art models evolving rapidly

Figure sources:

- 1. Han et al., Pre-Trained AlexNet Architecture with Pyramid Pooling and Supervision for High Spatial Resolution Remote Sensing Image Scene Classification
- 2. Vaswani et al., "Attention is all you need"
- 3. https://tkipf.github.io/graph-convolutional-networks/

Rapid Iteration and Deployment

Brainwave v2 Brainwave v4 Brainwave v3 Brainwave v1 Low latency LSTM Narrow Precision Convolution Generalized ISA, Breakthrough inference Optimizations Transformers 2016 2019 2017 2018

HyperScale -- Bing's 500 Petaflops Inference Supercomputer

Slick new hardware

© Microsoft Corporation Azure

Useful hardware

What makes a public cloud company successful?

Innovation in Software vs. Hardware

- SW is flexible, but is also SO much bigger
- You can't lead from the bottom
 - Just look at AMD GPUs vs. nVidia
 - x86 and Windows aren't the leaders because they've always been the best
- Nobody wants to do throw-away work
 - Work needs to (plausibly) span multiple generations

Focus on enabling your customers / developers, not on HW

Why is the FPGA a good choice as an accelerator?

- Greater Performance and Efficiency than CPU, more general purpose than ASIC
- Many applications aren't about throughput or double-precision floating point
 - AI/ML, Bioinformatics, text processing, financial services...
- Exploits different forms of parallelism than other accelerators

Why is the FPGA a good choice as an accelerator?

- Greater Performance and Efficiency than CPU, more general purpose than ASIC
- Many applications aren't about throughput or double-precision floating point
 - AI/ML, Bioinformatics, text processing, financial services...
- Exploits different forms of parallelism than other accelerators

Multiple instruction streams, single data stream (MISD)

Main article: MISD

Multiple instructions operate on one data stream.

This is an uncommon architecture which is generally used for fault tolerance. Heterogeneous systems operate on the same data stream and must agree on the result. Examples include the Space Shuttle flight control computer.^[5]

FE: Feature Extraction

Feature Extraction Accelerator

ASIC vs. FPGA

Performance

© Microsoft Corporation Azure

ASIC vs. FPGA

© Microsoft Corporation Azure

ASIC vs. FPGA

Requirement lock to decommission is over a decade (as long as Azure itself has existed)

A lot changes over a decade

Resource Functionality Over Time for 40Gbps Generation

Pkts/sec	Description			
22.5M PPS				
22.5M PPS	PFC Added			
22.5M PPS	Fast Offload, new Lookup			
22.5M PPS	PdParser, multi-tenancy, Flow Scaling to 4Million+			
100M PPS	GFT-V2, 100MPPS, Shell Update			
100M PPS	PCAP-V3, Filtering			

© Microsoft Corporation

HPC with the Cloud?

- The idea sounds great
- Pay for compute only when you use it
- When it breaks, it's someone else's problem
- No need to call the realtor / utility company when you want a bigger machine
- New hardware just shows up.
 No retrofits needed.

Why hasn't Supercomputing moved to the Cloud?

CPUs look largely the same, but...

- ☐ Top 500 often include specialized accelerators (especially GPUs)
- Networks are highly specialized, tuned for low-latency, high bandwidth
- Won't running virtual machines kill performance?

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)	
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899	
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.076Hz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM D0E/SC/Oak Ridge National Laboratory United States		148,600.0	200,794.9	10,096	
3	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	125,712.0	7,438	
4	Sunway TaihuLight - Sunway MPP, Sunway SW26010 2600 1.450Hz, Sunway, NRCPC	10,649,600	93,014.6	125,435.9	15,371	
5	10 Voyager-EUS 48C 2.45GHz Infiniband, M Azure East U	, NVIDI licrosof	A A100	0 80GE		4, AMD EPYC 7V12 llanox HDR
7	United States					
	National Super Computer Center in Guangzhou China					
8	JUWELS Booster Module - Bull Sequana XH2000 , AMD EPYC 7402 24C 2.8GHz, NVIDIA A100, Mellanox HDR InfiniBand/ParTec ParaStation ClusterSuite, Atos Forschungszentrum Juelich (FZJ) Germany	449,280	44,120.0	70,980.0	1,764	
9	HPC5 - PowerEdge C4140, Xeon Gold 6252 24C 2.1GHz, NVIDIA Tesla V100, Mellanox HDR Infiniband, DELL EMC Eni S.p.A. Italy	669,760	35,450.0	51,720.8	2,252	
10	Voyager-EUS2 - ND96amsr_A100_v4, AMD EPYC 7V12 48C 2.45GHz, NVIDIA A100 80GB, Mellanox HDR Infiniband, Microsoft Azure Azure East US 2 United States	253,440	30,050.0	39,531.2		

© Microsoft Corporation

39,531.2

253,440

30,050.0

Why hasn't Supercomputing moved to the Cloud?

CPUs look largely the same, but...

- Top 500 often include specialized accelerators (especially GPUs)
- Networks are highly specialized, tuned for low-latency, high bandwidth
- Won't running virtual machines kill performance?

Accelerator Integration

Traditional Accelerator Integration

Bump in the Wire -- In-Network Acceleration

Bump-in-the-wire Architecture

Global-Scale FPGA

Network Latencies

Extremely low latency (Similar to Infiniband)Global-scale FPGA

Why hasn't Supercomputing moved to the Cloud?

CPUs look largely the same, but...

- Top 500 often include specialized accelerators (especially GPUs)
- Metworks are highly specialized, tuned for low-latency, high bandwidth
- Won't running virtual machines kill performance?

Virtualization Overhead – Standard Virtual Machines

Virtualization Overhead – SmartNICs & Bump-in-the-Wire

Why hasn't Supercomputing moved to the Cloud?

CPUs look largely the same, but...

- Top 500 often include specialized accelerators (especially GPUs)
- Metworks are highly specialized, tuned for low-latency, high bandwidth
- Won't running virtual machines kill performance?

What will *really* make HPC developers adopt the cloud?

Developer Experience

- Focus on the Customer
- In Supercomputing, developers are often the customer
- Traditional HPC machines require long, in-advance reservations
- Cloud allows for gradual scaling, 24/7/365 availability

 Enabling physicists / chemists / biologists / etc.. to experiment is far more important to impact than peak performance

Conclusion

- Software is more important than hardware when you want to make an impact on the world
- Think of FPGAs as a *complement* to GPGPUs, not just a competitor
- FPGAs play a role in all parts of the HPC stack
- The Cloud will replace dedicated supercomputers
 - In large part due to developer experience
- High Flexibility enables a much longer lifetime, especially in new areas

© Microsoft Corporation Azure

