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Quantum devices for HEP
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• Qubits are two level devices |0⟩ and 1
2D Superconducting cavities, Ion Traps, ...

• Qudits are multilevel devices
e.g. ququart (4 levels) is 
equivalent to 2 qubits
|0⟩ ~ 00 , |1⟩ ~ |01⟩, |2⟩ ~ |10⟩, |3⟩ ~ 11

Strong interest in HEP algorithms on multilevel, multimode Qudit devices

Qudits?

3

506 | Nature | Vol 574 | 24 OCTOBER 2019

Article
developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 

Qubit Adjustable coupler

a

b

10 mm

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.

Google Sycamore 54 qubit QPU



Co-design cycle

Classical simulations with fast turn-around time are important for device and 
algorithm design

Where can simulations fit in?
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Includes device’s interaction with environment 
(noise & decoherence)

Evolves density matrix with Lindblad master equation   
!"($)
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• Real world behavior of device

• Gate design

• Optimal control

Open Quantum System Simulations
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• Used QuaC to simulate and compare systems with 
– Multiple qubits

– A multilevel qudit device

Example: Quantum memory – Qubit vs. Qudit
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Otten, Kapoor, Özgüler, Holland, Kowalkowski, Alexeev, Lyon, Phys. Rev. A 104, 012605 (2021)



• Used Juqbox to determine optimal pulses for a QAOA in for a 8 level system

Example – Optimal Control
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Özgüler and Venturelli, 
Numerical Gate Synthesis for Quantum Heuristics on 
Bosonic Quantum Processors, arXiv:2201.07787 



Fermilab QICK Control System
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Fermilab QICK Control System
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Simulation for code validation



• Supports sufficient size parameters (# qubits, # qudit levels, modes)

• Performant: Quick turnaround time. High performance libraries
HPC, GPU, TPU

• Friendly interface – use the system as you would a real device 

• Interfaces with community standard gate circuit-building tools (e.g. IBM Qiskit)
– Accepts standard instruction formats like QASM

• Can be driven from pulse descriptions and sequences

• Include a library of Hamiltonians and device profiles to get started quickly

• Usuable from cloud services and HEP batch systems (HEPCloud)

• Many toolkits to drive Qubits (IBM Qiskit, Google CIRQ). Are they expressive 
enough to drive Qudits? 

Desired Simulation Functionality
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• Simulations can play a critical role in development of quantum computational 
devices

• Tools with desired functionality would be especially useful, enabling,
– Development, Testing, Validation and Debugging

– Design of algorithms and system building blocks (e.g. multi-level gates)

– ... Without tying up the in-high-demand hardware

• Simulation of control systems will be fruitful – serve as a mock system

• Leverage HEP’s long experience with simulations

Summary
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