
Simulations for the Development of Quantum
Computational Devices for HEP
Jim Kowalkowski and Adam Lyon

Fermilab Quantum Institute, Fermi National Accelerator Laboratory

CompF6: Quantum Computing, July 20, 2022

Quantum devices for HEP

2

Qubits

Rigetti QPU

Qudits

SQMS 3D Cavity

Sensors

Search for Dark Matter

• Qubits are two level devices |0⟩ and 1
2D Superconducting cavities, Ion Traps, ...

• Qudits are multilevel devices
e.g. ququart (4 levels) is
equivalent to 2 qubits
|0⟩ ~ 00 , |1⟩ ~ |01⟩, |2⟩ ~ |10⟩, |3⟩ ~ 11

Strong interest in HEP algorithms on multilevel, multimode Qudit devices

Qudits?

3

506 | Nature | Vol 574 | 24 OCTOBER 2019

Article
developed fast, high-fidelity gates that can be executed simultaneously
across a two-dimensional qubit array. We calibrated and benchmarked
the processor at both the component and system level using a powerful
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling
the output of a pseudo-random quantum circuit11,13,14. Random circuits
are a suitable choice for benchmarking because they do not possess
structure and therefore allow for limited guarantees of computational
hardness10–12. We design the circuits to entangle a set of quantum bits
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum
interference, the probability distribution of the bitstrings resembles
a speckled intensity pattern produced by light interference in laser
scatter, such that some bitstrings are much more likely to occur than
others. Classically computing this probability distribution becomes
exponentially more difficult as the number of qubits (width) and number
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a
method called cross-entropy benchmarking11,12,14, which compares how
often each bitstring is observed experimentally with its corresponding
ideal probability computed via simulation on a classical computer. For
a given circuit, we collect the measured bitstrings {xi} and compute the
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary
Information), which is the mean of the simulated probabilities of the
bitstrings we measured:

F P x= 2 " ()# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi
computed for the ideal quantum circuit, and the average is over the
observed bitstrings. Intuitively, FXEB is correlated with how often we
sample high-probability bitstrings. When there are no errors in the
quantum circuit, the distribution of probabilities is exponential (see
Supplementary Information), and sampling from this distribution will
produce F = 1XEB . On the other hand, sampling from the uniform
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB
between 0 and 1 correspond to the probability that no error has occurred
while running the circuit. The probabilities P(xi) must be obtained from
classically simulating the quantum circuit, and thus computing FXEB is
intractable in the regime of quantum supremacy. However, with certain
circuit simplifications, we can obtain quantitative fidelity estimates of
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient
width and depth such that the classical computing cost is prohibitively
large. This is a difficult task because our logic gates are imperfect and
the quantum states we intend to create are sensitive to errors. A single
bit or phase flip over the course of the algorithm will completely shuffle
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists
of a two-dimensional array of 54 transmon qubits, where each qubit is
tunably coupled to four nearest neighbours, in a rectangular lattice. The

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this
device is achieving high-fidelity single- and two-qubit operations, not
just in isolation but also while performing a realistic computation with
simultaneous gate operations on many qubits. We discuss the highlights
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a
macroscopic quantum state, such that currents and voltages behave
quantum mechanically2,30. Our processor uses transmon qubits6, which
can be thought of as nonlinear superconducting resonators at 5–7 GHz.
The qubit is encoded as the two lowest quantum eigenstates of the
resonant circuit. Each transmon has two controls: a microwave drive
to excite the qubit, and a magnetic flux control to tune the frequency.
Each qubit is connected to a linear resonator used to read out the qubit
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring
qubits using a new adjustable coupler31,32. Our coupler design allows us
to quickly tune the qubit–qubit coupling from completely off to 40 MHz.
One qubit did not function properly, so the device uses 53 qubits and
86 couplers.

The processor is fabricated using aluminium for metallization and
Josephson junctions, and indium for bump-bonds between two silicon
wafers. The chip is wire-bonded to a superconducting circuit board
and cooled to below 20 mK in a dilution refrigerator to reduce ambient
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics,

Qubit Adjustable coupler

a

b

10 mm

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular
array of 54 qubits (grey), each connected to its four nearest neighbours with
couplers (blue). The inoperable qubit is outlined. b, Photograph of the
Sycamore chip.

Google Sycamore 54 qubit QPU

Co-design cycle

Classical simulations with fast turn-around time are important for device and
algorithm design

Where can simulations fit in?

4

Includes device’s interaction with environment
(noise & decoherence)

Evolves density matrix with Lindblad master equation
!"($)
!$

= ∑& 𝛾&𝐿 𝐶& [𝜌 𝑡]
• Real world behavior of device

• Gate design

• Optimal control

Open Quantum System Simulations

5

Environment

System
Interaction

• Used QuaC to simulate and compare systems with
– Multiple qubits

– A multilevel qudit device

Example: Quantum memory – Qubit vs. Qudit

6

Otten, Kapoor, Özgüler, Holland, Kowalkowski, Alexeev, Lyon, Phys. Rev. A 104, 012605 (2021)

• Used Juqbox to determine optimal pulses for a QAOA in for a 8 level system

Example – Optimal Control

7

Özgüler and Venturelli,
Numerical Gate Synthesis for Quantum Heuristics on
Bosonic Quantum Processors, arXiv:2201.07787

Fermilab QICK Control System

8

Backend
(server)

QICK board
Job

pulse schedules
and parameters

Translation: pulse
parameters to
waveforms?

Backend
Proxy

Translation: pulse
parameters to
waveforms?

Provider
name -> Backend Address

Translation from
schedule to

QICKProgram

JSON OpenPulse
or Custom

(HTTP)

Job/Experiment
Status/Results

Backend
(server)

Simulator

Translation from
schedule to QuTip,

Quandary

Connect,
Configuration

parameters

QisKit application

Fermilab QICK Control System

9

Simulation for code validation

• Supports sufficient size parameters (# qubits, # qudit levels, modes)

• Performant: Quick turnaround time. High performance libraries
HPC, GPU, TPU

• Friendly interface – use the system as you would a real device

• Interfaces with community standard gate circuit-building tools (e.g. IBM Qiskit)
– Accepts standard instruction formats like QASM

• Can be driven from pulse descriptions and sequences

• Include a library of Hamiltonians and device profiles to get started quickly

• Usuable from cloud services and HEP batch systems (HEPCloud)

• Many toolkits to drive Qubits (IBM Qiskit, Google CIRQ). Are they expressive
enough to drive Qudits?

Desired Simulation Functionality

10

• Simulations can play a critical role in development of quantum computational
devices

• Tools with desired functionality would be especially useful, enabling,
– Development, Testing, Validation and Debugging

– Design of algorithms and system building blocks (e.g. multi-level gates)

– ... Without tying up the in-high-demand hardware

• Simulation of control systems will be fruitful – serve as a mock system

• Leverage HEP’s long experience with simulations

Summary

11

