
CompF5: End User Analysis

Amy Roberts (UC Denver, CDMS)
Peter Onyisi (UT Austin, ATLAS)
Gavin S. Davies (U. Mississippi, NOvA/DUNE/EMPHATIC)

1

Recommendations &
Highlights

https://snowmass21.org/computational/analysis

https://snowmass21.org/computational/analysis

Are these covered?
Some topics have perhaps slipped through the cracks between topical groups - not
strictly end-user analysis but strong connections

● High-level software “frameworks” - LArSoft, Gaudi, cmssw, Athena, …
● Software environments for build + deployment

○ Build systems
○ Diverse environments (ability to try new compilers, libraries, …) vs controlled environments

(simpler builds, fewer unexpected interactions). Everything in containers?
○ Continuous integration

● Workflow management

2

Analysis Software Ecosystems
Finding: There are two primary ecosystems developing for analysis in the next
decade: one based on the ROOT libraries and one based on a collection of Python
libraries. These projects have similar goals and scope but are organized differently
and have different philosophies regarding industry tool use.

Recommendation: development of both ecosystems should be supported. The
friendly competition between the two has already resulted in significant
improvements for users. Maintaining interoperability between the two (e.g. in data
formats) should be a priority.

3

Analysis Software Languages
Finding: The main general purpose languages used in HEP today are C++ and
Python. Projects such as PyROOT have enabled interoperability of these languages
at a level not replicated by other options in HEP.

Recommendation: these two languages both have important roles to play in their
respective niches and are expected to remain dominant in the near future. Other
languages are generally unfamiliar to the community, have weak interoperability
with existing libraries, and impose a maintenance burden if used without careful
planning. Outside of bottom-up projects in other languages, or overwhelming
domain-specific needs (e.g. JavaScript for visualization in web browsers), C++ and
Python should be recommended.

4

Analysis Software Languages (2)
Additional note: there is a reasonable concern about the efficiency of using
interpreted languages in core analysis kernels, both in terms of computing resource
use and consequent environmental impact. We recommend that the Python
ecosystem community demonstrate that this issue has been addressed, and also
ensure that just-in-time compiler technology (e.g. numba) is easy to integrate into
user code.

5

Domain-Specific Languages
Finding: A number of domain-specific languages have been proposed to address
problems in various spheres, from specifying operations in columnar analysis, to
specifying likelihood construction from histograms, to describing analysis at a very
high level. Additionally, certain uses of Python (e.g. when scripting ML libraries, or
working with RDataFrame) can be viewed as a DSL as they require library-specific
knowledge.

Recommendation: “High-level” DSLs that attempt to describe analysis via high-level
objects are unlikely to generalize well between experiments as often the
“primitives” are too different, but can be useful in certain situations. The lower-level
DSLs can be extremely useful where relevant, however effort should be taken to
avoid unnecessary duplication of scope as this imposes burdens on users similar to
using multiple general purpose languages.

6

Data Formats
Finding: The ROOT container file format is ubiquitous in HEP, and comes with a
serialization scheme tightly linked to the ROOT libraries. Industry and non-HEP
tools typically use other formats (e.g. Apache Parquet for the ROOT TTree), and
efforts are ongoing to enable their use. In addition the ROOT team foresees an
evolution of the TTree to the more-optimized RNtuple. Multiple independent
implementations of ROOT I/O are available. As ROOT is specialized to the HEP use
case, it supports features missing from other formats.

Recommendation: The ROOT file format is extremely important for ongoing
experiments and historical data and compatibility must be maintained. Other
formats have important use-cases. Tools to translate between formats, and to
enable various ecosystems to ingest and produce them, should be maintained.

7

Metadata
Finding: Experiments usually have global solutions for handling metadata involved
in dataset cataloging and workflow control. However these solutions frequently are
not available for individual analyses and users may need to develop bespoke
solutions.

Recommendation: Effort should be put into developing user-friendly data
provenance and metadata storage systems that can be easily integrated into
typical analysis tasks.

8

Analysis Models
Finding: Users need to be able to scale their analyses from simple tests on a small
debugging dataset to full deployment over all data. In many cases this transition
requires working in a different environment (a common case is transitioning from a
local workstation, referring to specific files, to a batch job running on a catalogued
dataset). This can involve significant difficulties for users and cause support issues.

Recommendation: There is unlikely to be a one-size-fits-all solution for all
experiments. Recent work with interactive analysis facilities which provide extreme
scaling capabilities to users through a single interface may address many of these
issues; if successful the resulting software stacks should be made available to small
experiments in a turnkey way.

9

Long-Term Preservation
Finding: Transitioning from the way an analysis is actually done to a “packaged”
version that can be rerun by an outsider from scratch is typically complex, as the
entire workflow is rarely described in a single place. This causes people to see
long-term preservation as an additional burden whose benefits they will not see.

Recommendation: provide pipelines to nudge users into choosing practices
compatible with long-term preservation as the default. These need to be
considered and built in to the structure of analysis systems at the start, not bolted
on at the end.

10

Personnel Issues
Finding: A lot of transformative ideas are introduced to the HEP computing
community and are implemented by early-career scientists (especially grad
students and postdocs). Support for these physicists can be minimal, and the career
trajectories are opaque.

Recommendation: software work (especially with cross-experiment application)
should receive stronger consideration for funding. More cross-experiment/frontier
computing physicist positions could be created. Funding agencies and frontiers
need to work together to identify viable long-term funding patterns for this work.

11

Long-Term Support
Finding: Software typically has low barriers to initial entry but significant ongoing
maintenance requirements. New software projects are frequently initiated without
much concern for long-term support (and this is reasonable since many bottom-up
projects do not succeed).

Recommendation: computing personnel should be funded specifically to maintain
software projects identified as satisfying an important need in the community (for
example, by the HEP Software Foundation).

12

Collaborative Software
Finding: The “full” analysis stack of an experiment also includes software that
enables interaction between analyzers. This includes documentation of the
experiment’s code, messaging between users, discussion forums, software version
control, bug tracking, and document workflow management. Especially for small
experiments, setting up this infrastructure from scratch can be daunting both in
effort and cost.

Recommendation: host laboratories should provide a full stack of these services to
experiments. XSEDE/ACES could also play an important role here as some
laboratories have onerous access requirements.

13

Training
Finding: There are many cases where experiments are limited by the availability of
personnel trained in various aspects of computing. All students need to be trained in the
software and languages used for analysis; beyond that, specialized training may be
needed for specific areas, such as GPU use or code optimization. Many traditional
avenues (e.g. dedicated academic classes or industry training) may not be a good match
to needs or affordable. There are significant efforts through the HEP Software Foundation
and other initiatives to develop effective training for HEP software. Software training has a
direct connection to concerns about diversity, equity, and inclusion.

Recommendation: the scalability of various approaches to training should be understood.
Best practices from education research, industry, and assessment should be incorporated
into efforts. Funding should be made available for the development and hosting of training
materials and should include partnerships with education researchers.

14

