Low-Threshold Detectors for Neutrinos: The Long View

Sunil Golwala

Caltech

2022/07/21

Neutrino Physics Frontier

Blue Sky/Very Long Term Ideas Session

Overview

<u>Low-Threshold Detectors</u> = detectors with meV to eV scale thresholds for scattering of weakly interacting particles (neutrinos, DM)

Outline

DM motivation for low-threshold detectors ("quantum calorimeters")

Potential science interest of low-threshold detectors for neutrino physics

Backups: Quick summary of architectures under development

Caveat

I'm not a neutrino physicist!

But hopefully some developments in DM detection could impact neutrino studies on the I-2 decade timescale.

For more detail, see Golwala and Figueroa-Feliciano, Ann Rev Nucl Part Sci, in press.

DM Motivation for Low-Threshold Detectors

A new picture for DM:

Why?

No DM in spite of 30 years of dedicated searches in labs, the sky, and accelerators

⇒ reconsideration of:

theoretical bias in favor of axions and WIMPs production mechanisms cosmological constraints

Dark Matter → Quantum Sensors

Dark Matter → Quantum Sensors

Wave-like Dark Matter

Occupation number » I: difficult to identify individual DM particles, sense "Collective force from macroscopic numbers of particles"

New light scalar (axion-like particle (ALP) or vector (dark photon (DP))

Quantum zero-point fluctuations are the primary obstacle: a quantum problem

Fundamentally quantum approaches needed to circumvent

Occupation number « I: individual particles can be seen*

Scattering of fermionic DM Absorption of heavier ALPs, DPs

"Quantum" effects:

<u>Direct</u> creation of single quantum (not via identifiable particle recoil)

Use of quantum sensors to see the very small energy depositions

 $eV \rightarrow meV$

^{*}Occupation number > 1 for bosonic DM does not imply particle-like absorption is not possible, but it makes classical field detection possible.

Quantum Calorimeters for Particle-Like DM

"Logical conclusion" of existing modalities for sensing phonons, ionization, and scintillation

Semi-classical picture

Enough quanta produced to treat as continuous variable

Quantization not apparent in E_{observed}.

Kozorezov et al PRB: 75, 094513 (2007)

Quantum picture

Production of single charges or scintillation photons (eV quantization)

Arguable whether sensing single charges or photons is "quantum" (e.g., PMTs, SiPMs)

Innovations considered "quantum":

Detection of single photons with nearly 100% efficiency and very low dark count rates vs. PMT, SiPMs

Direct production of single condensed-matter quanta like phonons, plasmons, etc.

Energy depositions so small that "quantum" techniques must be used to detect

e.g. direct optical phonon production mediated by DM-e coupling

Quantum Calorimeters: Interaction vs. Creation vs. Sensing

Interaction modalities

DM

Nucleus scattering

single-site

multi-site

Electron scattering

single-site

multi-site

(dielectric absorption function)

Neutrinos

Nucleus scattering

single-site

multi-site

Photons

Electron scattering

single-site

multi-site

(dielectric absorption function)

Cavity or antenna mode creation

Creation modalities

Single e-h pair creation

Single scintillation photon creation

Single optical phonon creation

Single acoustic phonon creation

Single Cooper pair breaking

Single plasmon creation

Exotic quanta

Dirac materials, magnons, ...

Single conversion-photon creation

Sensing Modalities: mostly cryogenic

Transition-Edge Sensors (TESs)

Kinetic Inductance Detectors (KIDs)

Skipper CCDs

Superconducting Nanowire Single Photon Detectors (SNSPDs)

Parametric amplifiers for squeezing

Quantum non-demolition (QND) photon, phonon detectors

Quantum Calorimeters:

DM Kinematics and Scattering Modes keV

Energy-momentum transfer of galactic DM scattering kinematically limited by max v_{DM}

Interactions with nuclei ($\sim CE\nu NS$)

Up to E_{nuc}^{bind} ~ 10-20 eV, nucleus cannot leave ionic site: direct production of multiple phonons

Lines truncated when single nucleus scattering invalid, $q < (lattice constant)^{-1}$. Instead, direct single phonon creation via coherent multi-site interaction

Interactions with electrons (EC, NC e^- detection)

FEG = free electron gas, valid for $E > E_{elec}^{bind}$

 $E_{elec}^{bind}=0$ for metals, superconductor (SC) in transition

 $\sigma_{\!\scriptscriptstyle E} \propto T^{lpha} \sqrt{M}$ because fermionic excitations with no gap

 \Rightarrow poor σ_E for large target mass for DM

 $E_{elec}^{bind} \sim {\rm eV}$ for semiconductor/insulator, meV for SC

Gapped excitation spectrum suppresses σ_E

No electronic excitations for $E < E_{elec}^{bind}$; instead:

Blue shaded region: plasmons

Most phase space inaccessible except for heavy fermion materials

Optical phonon creation by light/dark photon absorption Coupling to unit cell dipole moment in polar materials

What about neutrinos?

eV-scale thresholds interesting for $CE\nu NS$: not quite quantum, but benefits from QS efforts

Solar neutrinos: good potential

e.g. SuperCDMS long-term future:

0.5 eV threshold requires 25 gm/Si detector operating at 0V (phonons-only), can deploy 72 kg in SuperCDMS SNOLAB ($N \sim 3000$ detectors)

Expect about 250 pp neutrinos per year

Sub-10% statistical precision on pp flux

Or search for deviations from SM with sub-10% statistical precision if LXe measures pp flux via ν -e scattering

Requires good control of 136Xe background

Reactor neutrinos: much better potential for studying $CE\nu NS$

MeV antineutrino energies \Rightarrow $\langle E \rangle \approx 100$ eV CE ν NS in Si: eV threshold captures full spectrum @ ~ 50 events/kg-d

Large event rates!

comparable statistical precision to pp neutrinos with 5000x smaller exposure ($N \sim 10$ detectors for 100 days)

1% statistical precision with intermediate mass $(N \sim 100 \text{ detectors for } 100 \text{ days})$

Both require control of 10-100 eV scale low-energy backgrounds now becoming visible in DM expts

What about neutrinos?

 $\mathcal{O}(10)$ meV resolution on electron detection possible with quantum calorimeters

Relic cosmic neutrino background

PTOLEMY would use neutrino capture (IBD) on tritium producing I-10 eV electrons

Requires $\sigma_E < 0.05$ eV

Small mass (can focus electrons on detector) permits "semi-classical" sensor, $E_{elec}^{bind}=0$

Deposit electron energy in free-electron gas directly

Still, benefits from low-threshold/high-resolution goals for sensing modalities (TESs)

See following talk by A. Tan

Neutrino mass via electron capture endpoint in ¹⁶³Ho (2.828 keV)

HOLMES embeds isotope in a calorimeter with high resolution (~low threshold)

Requires:

≤ eV resolution to compete with tritium endpoint measurements

Characterization of nonlinearity at $E pprox 10^4 \sigma_E$

Requires "semi-classical" sensor, $E_{elec}^{bind}=0$, to avoid being limited by counting statistics

$$E/\sigma_E \gtrsim 10^4 \, \mathrm{needed} \ \Rightarrow N_{quanta} \gtrsim 10^8$$

Again, benefits from low threshold goals for sensing modalities (TESs)

Conclusions

An expansion in the mass range of interest for DM has led to the development of low-threshold detectors based on quantum sensors

Today: eV in single detectors, 10 eV in full experimental deployment

Long-term goal: meV thresholds

Large payloads of such detectors could be useful for neutrino physics in the longer-term:

Low-threshold detectors with I-100 kg target mass

Measurements of pp neutrinos or using them to look for non-SM CE ν NS Search for non-SM CE ν NS at reactors

High-resolution detectors

Detection of low-energy electrons to measure the $C\nu B$ via neutrino capture EC spectrum endpoint measurements for neutrino mass

Backups: Architectures Under Development

Quantum Calorimeters Today

Superconducting transition T_c $\alpha = \frac{dlogR}{dlogT}$ $= \frac{T}{R} \frac{dR}{dT}$ Hilton

Calorimeters based on Transition-Edge Sensors

TESs provide very sharp resistance vs.T curve

Electothermal feedback can be used to stabilize

Electrical signal measures received energy

Coupled to calorimetric substrate via athermal phonon collectors

Now approaching the quantum regime

Large bias voltage provides amplification via Neganov-Trofimov-Luke phonons: enables single e-h pair detection

But subject to significant leakage currents: single eh pair detection unreliable

Native resolution ~ 3 eV achieved

Reduced T_c , improved design expected to yield sub-eV resolutions, eventually approaching $10\ meV$

Single eh pair detection without leakage

Single phonon detection

PRL 121: 0513401 (2018)

Quantum Calorimeters Today

Kinetic Inductance Detectors (KIDs)

Superconductors have an AC inductance due to inertia of Cooper pairs

KID = superconducting film incorporated into LC resonator to sense change in L

Energy resolution: sub-eV → meV thresholds w/o HV

Direct sensitivity to pair-breaking phonons

Large resonators obviate phonon collectors

Gapped density of states

Thermal quasiparticles exponentially suppressed

Fundamentally non-dissipative

Amenable to QIS techniques (e.g. squeezing, QND)

Noise is limited by

quasiparticle population fluctuations amplifier noise

75 mm

x I mm

Multiplexing:

KIDs are Q>105 resonators

- → Readout many with one cryo line/amplifier; most electronics at 300K
- → Highly position-resolved phonon detection

Quantum Calorimeters Today

Skipper CCDs

CCD with two readout innovations

High-frequency differencing to reduce impact of 1/f amplifier noise

Non-destructive multiple read cycles to reduce electronics noise by \sqrt{N}

Provides similar single-eh pair sensitivity

Currently being applied for DM searches, low-light-level astronomy

Superconducting Nanowire Single Photon Detectors (SNSPDs)

Threshold detector for single photons

Very narrow (~100 nm) superconducting meander biased close to transition

Absorption of photon drives normal

ps timing resolution

Provides high-efficiency, high-fidelity photon counter for QIS applications

WSi demonstrated with 100 meV threshold

Very low dark count rate demonstrated, applicable for DM searches

But very small volume

High current density enlarges hotspot

https://singlequantum.com/technology/snspd/

Quantum Calorimeters in the Future

Single optical phonon creation/detection

Polar materials:

> I atom/unit cell → optical phonons (10s of meV) polar → unit cell EDM can couple to dark photons

Optical phonon creation provides access to electron scattering down to few keV m_{DM}

Single acoustic phonon creation/detection

DM interacting with many nuclei coherently

Requires meV-100 meV thresholds

Eventual reach down to few keV m_{DM}

https://images.app.goo.gl/vvBWneR6noCnseCXA

