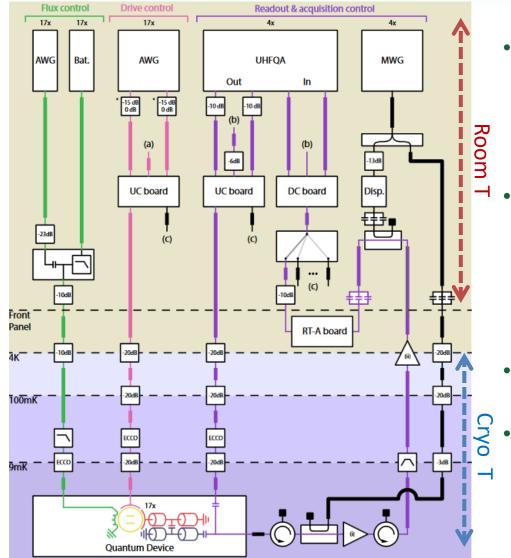

QICK (Quantum Instrumentation Control Kit), Readout and control for qubits and detectors.

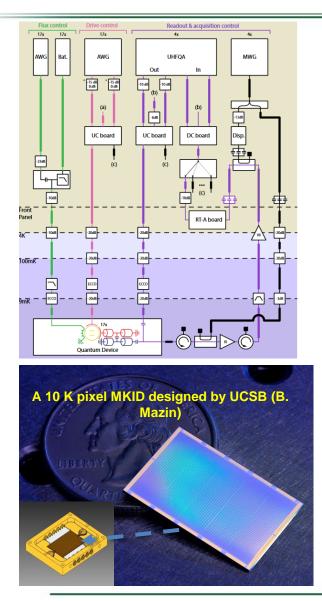
Gustavo Cancelo cancelo@fnal.gov Fermilab

July 18, 2022

Warm electronics for control, detection, and readout

- This talk focus: detectors and processing elements for high energy physics and quantum information science.
- In particular, detectors for cosmological studies of the CMB, DM and DE.
- Those detectors generate very faint signals. SNR is the main issue.
 - SNR is improved by working at very low T: 10mK-300mK, depending on the technology.
- Quantum detector signals are likely the smallest power of the class.
- Some computing elements (qubits) in quantum information science are technologically similar.
- Some detectors for quantum networks are also technologically similar.
- Technologically speaking they share some physics principles and properties
 - Quantum optics and electrodynamics.
 - Made to operate in superconducting regime.
 - Operated cryogenically below 1K.
 - Independently of the spectrum they are looking at (e.g. microwaves, IR, visible) the detectors translate the signal into an electromagnetic output in the RF spectrum (e.g. 1GHz-20GHz).
 - Many of those detectors and QIS systems need to be exited by DC or RF signals or pulses.


This work is largely supported by DOE-QSC and DOE-HEP-Detector R&D and projects.

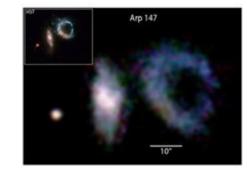

Warm and cold electronics for control, detection, and readout

- To highly suppress thermal photons (noise) the input lines place attenuators at strategic locations at several T stages inside the fridge. 40 to 60 dB typical.
 - That places a requirement of power in the warm electronics for control and readout.
- Since refrigerator lines are expensive and large, it is highly desired to place multiple detectors/qubits on the same input/output lines.
 - The most successful case is the MKID (Microwave Kinetic Inductance Detector) which has proved to place 2000 resonators using frequency multiplexing in the 4-8GHz (B. Mazin lab UCSB).
- Typical excitation/control signals are on the order of -90dBm to -110dBm depending on the technology and material.
- To keep SNR at the output LNAs are required
 - Parametric amplifiers. Sometimes using squeezed params below quantum limit noise.
 - HEMT ~1K noise T.

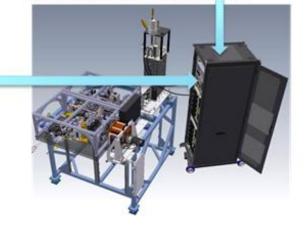
Warm and cold electronics for control, detection, and readout

- The warm electronics for control and readout requires signal generators, sometimes AWGs (Arbitrary Waveform Generators) with continuous or pulsed signals.
- Frequency multiplexing of continues RF signals of up to several thousand tones are used.
 - The excitation frequency comb must be clean of harmonics and spurs.
 - Typical specifications are: 100dBc/sqrt(Hz), SFDR>70dB.
 - Individual power control for every frequency tone.
 - Individual frequency control for every frequency tone with a resolution of a fraction of the detector BW (e.g. resolution of <1KHz for a typical 100KHz KID).
- Frequency and time domain multiplexing of band limited signals
 - Required for quantum control.
- DC coupled control up to 1GHz of BW
 - Some systems require few KHz ramps.
- DC biasing, up to 20 bits.
- What is the best architecture and technology to solve the problem with high performance and in the most cost-effective way?

2015 fMESSI: 1Kpixel control and readout board by Fermilab-UCSB


fMESSI 2016-2020

7 years ago!

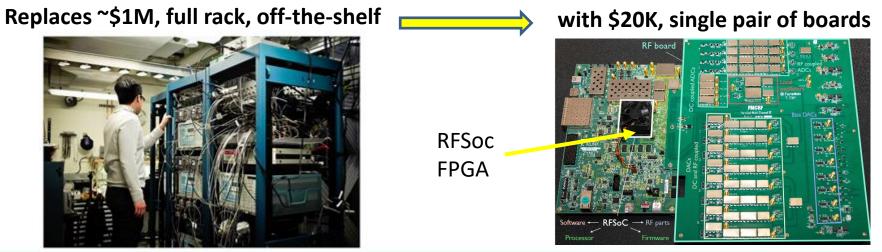


DARKNESS at Palomar 2016

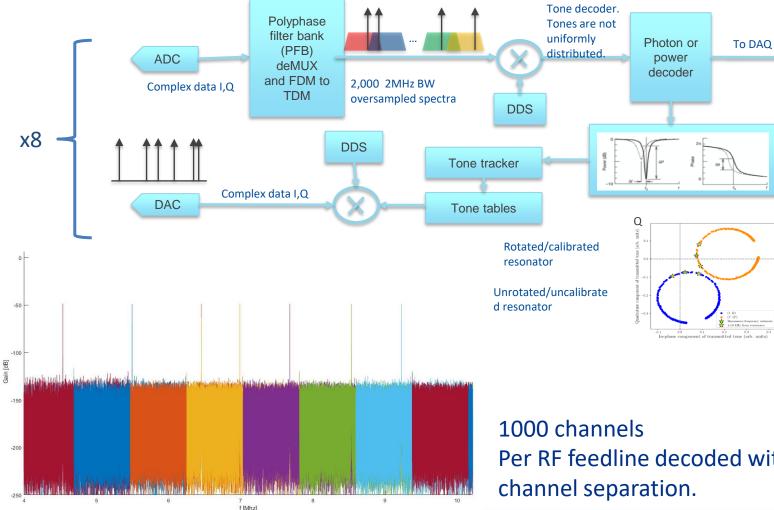
MEC: 20K MKID system operating at 8m telescope at Subaru since 2018 using FNAL Gen2 fMESSI electronics (20 boards)

- Single RF output/input in 4-8 GHz
- MEC required 20 fMESSI for 20Kpixel camera.
- FPGA technology plays a big role the design of complex signal generation and readout functions:
- Digital signal processing galore!
 - Digital up/down converters.
 - Polyphase filter banks.
 - Digital filters.
 - Channelizers (for synthesis and analysis).
 - Optimal control.

Previous, related work 20K MKID pixel camera (MEC) at 8m Subaru telescope (2018). <u>https://web.physics.ucsb.edu/~bmazin/projects/mec.html</u>


10K MKID pixel camera DARKNESS at Palomar (2015) Both instruments in collaboration with Ben Mazin's Lab (UCSB) https://web.physics.ucsb.edu/~bmazin/projects/darkness.html

2021 QICK1: integrated control and readout for detectors and QIS


- A fully integrated readout and control system for QIS, quantum networks and superconducting detectors.
 - No extra room temperature hardware needed.
- Increased performance: RF control up to 10GHz. DC coupled control up to 2GHz. 1ppm resolution in bias channels. 2ps resolution in timing measurements.
 - 16 x 14-bit DAC outputs in DC to 10 GHz. I-Q done in digital => you only need half the number of outputs
- Frequency multiplexing of up to 8K channels per board.
- Frequency multiplexed control and readout up to 16 qubits per output/input.
- The cost of the system is \$20K including the digital FPGA board and RF custom board.

Qubit control is still full of off-the-shelf expensive equipment. HEP can help a lot (and that is what we did with QICK)

8K channels on a single XCU28DR FPGA, cost \$2/channel including the cost of RF warm electronics. ۲

- Total input: 2GHz per • feedline.
- 1000 channels, 2MHz • (typical) separation.
- Channel frequency fine \bullet adjustment using DDS.
- Channel output measures • power or single photons.
- Output/input powers • adjustable.
- Fast digital up/down • conversion.

Per RF feedline decoded with better than 80dB

Fermilab

Mapping the CMB at High-**Frequency with Kinetic** Inductance Detectors on the **South Pole Telescope**

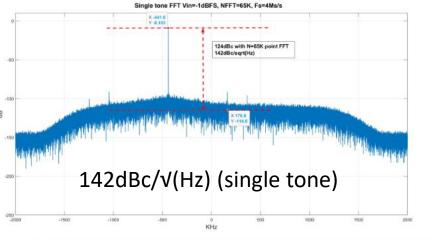
Conclusions

-50.0

-52.5

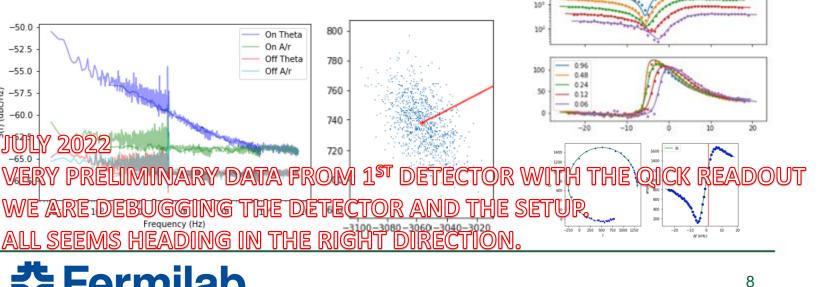
-55.0

-60.0


JUL

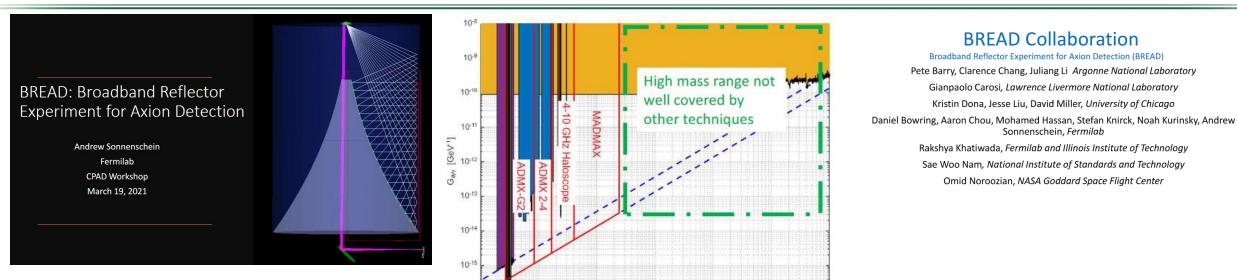
훈 -57.5

- Rayleigh scattering and precision measurements of the kSZ effect are powerful probes of the physics of recombination and reionization
- Background-limited MKIDs offer a fundamental sensitivity advantage vs. TESs for observations above 150 GHz
- Using a simple MKID architecture and modern highly multiplexed readout, SPT-4 is able to reach Rayleigh scattering and kSZ sensitivities comparable to CMB-S4~8 years sooner
- SPT-4 cryostat is a valuable platform for demonstrating early-stage detector technology


Adam Anderson (FNAL) et al., SPT collab.

- MKIDs offer SPT upgrade a unique opportunity to improve science, even reaching Rayleigh scattering and kSZ sensitivities comparable to CMB-4
- More detectors per area.
- Low res. Spectroscopy. •

🗲 Fermilab



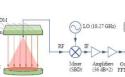
- We have developed QICK2, based on the ZCU216 from Xilinx. Compatible with ZCU208.
- MKIDs: 8K channel/board.
- It does not require external analog mixers.
- It covers a spectrum of up to 10GHz with I-Q tones generated in the digital domain.
- This is the default for QIS systems we are working with at U.Chicago (D. Schuster's lab), Princeton (A. Houck's lab), Pittsburgh (Hatlab).
- We are working on a companion RF board that includes amplifiers, filters and step power attenuators.
- For 8K channels the cost is \$2/KID.
- \$1M for 500K channels.

QICK for detectors: High Mass Axion Searches, BREAD project

10-4

Three Types of Experiment

1. Heterodyne detection


- Downconvert signal frequency by mixing with a local oscillator.
- Excellent for measuring narrow spectral features.
- Ultimate sensitivity governed by Standard Quantum Limit (SQL) $T_{noise} = hf/K_b \label{eq:constraint}$

2. Bolometer

- Absorb optical power on a "black" surface & measure temperature.
- Intrinsically broadband- single device may cover decades of wavelength.
 No intrinsic frequency resolution
- No intrinsic frequency resolution.
 Not subject to Standard Quantum Limit.
- Detection of 10^{25} W KSVZ axion signal within one year requires Noise Equivalent Power (NEP) $\sim 10^{-22} W / \sqrt{Hz}$. Two orders of magnitude beyond state-of-art.
- 3. Photon counting
 - Simple counting experiment similar to WIMP searches.
 - Background rate as low as ~1 event/day needed to cover mass range up to 0.1 eV.
 This is bound current such that is a set of the set of the
 - This is beyond current capability, but photon counting technology is evolving rapidly, driven by quantum information science applications.

Heterodyne detection

Thermal Reservoi

10-16

10-5

Thermal Conductance G

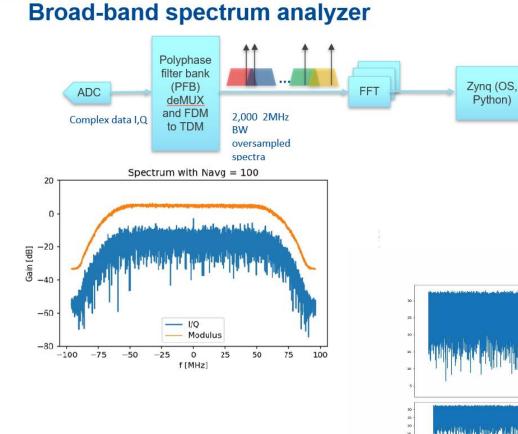
Three type of experiments:

10-3

Axion Mass [eV]

Broadband antenna 2-20GHz. Readout requires a fine resolution FFT averaged for a long time until a signal is detected.

- Photon counting using SNSPDs.
- QICK1 used for the antenna readout.


10-2

10-1

QICK2 for SNSPD control and readout.

QICK1 for control and readout of Quantum Capacitor Detectors.

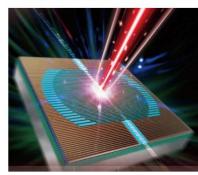
QICK for detectors: High Mass Axion Searches, BREAD project

- 500K point FFT every 60usec.
- FFTs are averaged on the FPGA.

0.20 0.25 0.30 0.35 0.40 0.45 0.50

Standar

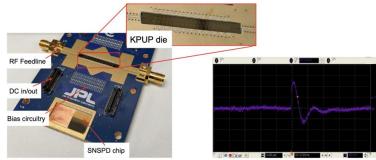
- Number of averages is very large (up to days, if needed).
- The analog RF band is preselected by analog hardware.
- Zooming on a slammel spectrum allows for very fine frequency resolution.

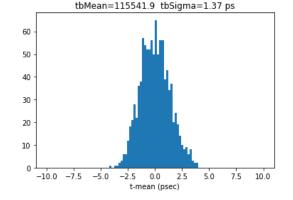


‡Fermilab

Number of Samples Averaged.

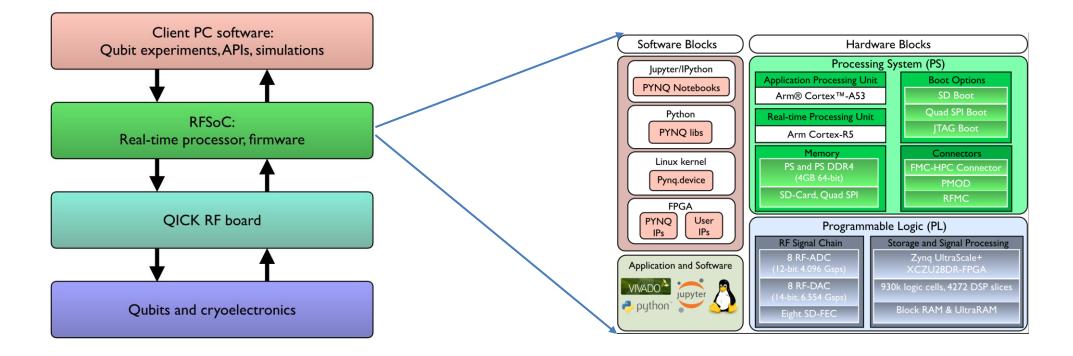
Quantum Sensor: SNSPDs


Superconducting Nanowire Single Photon Detectors

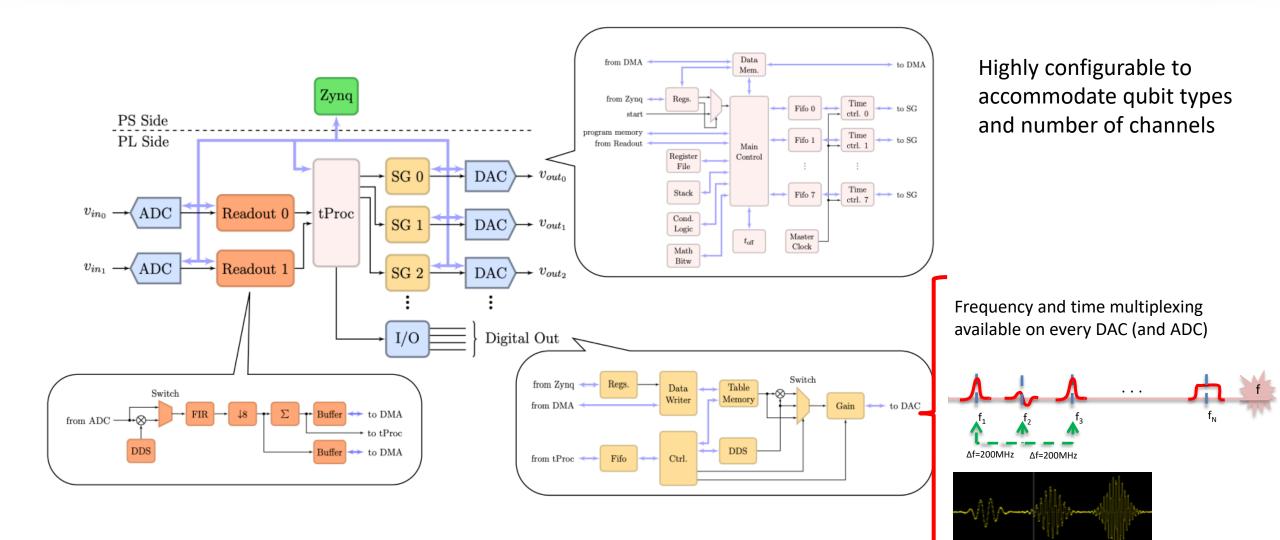

 Sensitive to 0.1eV photons >90% system efficiency •Low dark count rate 1e-5Hz Record time resolution ~3ps

1x1 mm² sensor - 8channel 1x1 mm² sensor package Next Generation SNSPD — Large Areas Achieving large area SNSPD will open up new HEP applications

- SNSPD measurements at FNAL-SCD
- QICK fast timing measurements for quantum networks: < 2ps resolution •
 - Already triggering and reading photon entanglement experiments (Cristian Peña, et al)
 - JPL (Matt Shaw's group will use QICK).
- QICK to read single SNSPDs and SNSPD arrays for DM and gravitational waves. •
 - We have a multichannel prototype for single SNSPD (time precision measurement)
 - GQuEST recently approved.



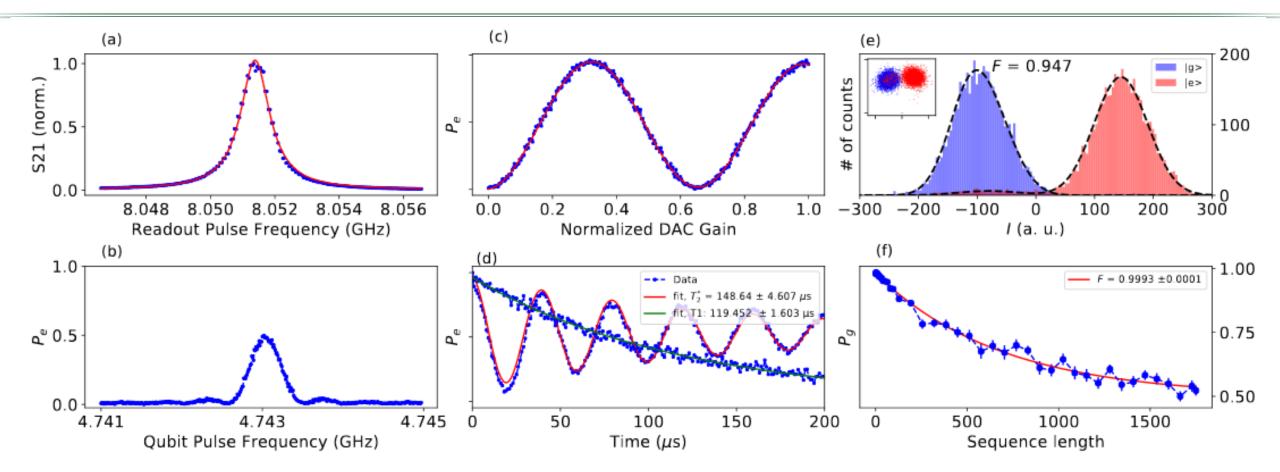
Fermilab


QICK Software for QIS (similar model can work for detectors)

- Quantum programs are developed in python using the PYNQ environment and Jupyter notebooks.
- Quantum programs run on Linux in the RFSoC FPGA 4 core processor.
 - QICK is kerberized and on the network.
- All critical functions are executed in the programmable logic.
- In progress: Software layers to make QICK a backend for Qiskit and Braket. OpenQasm3

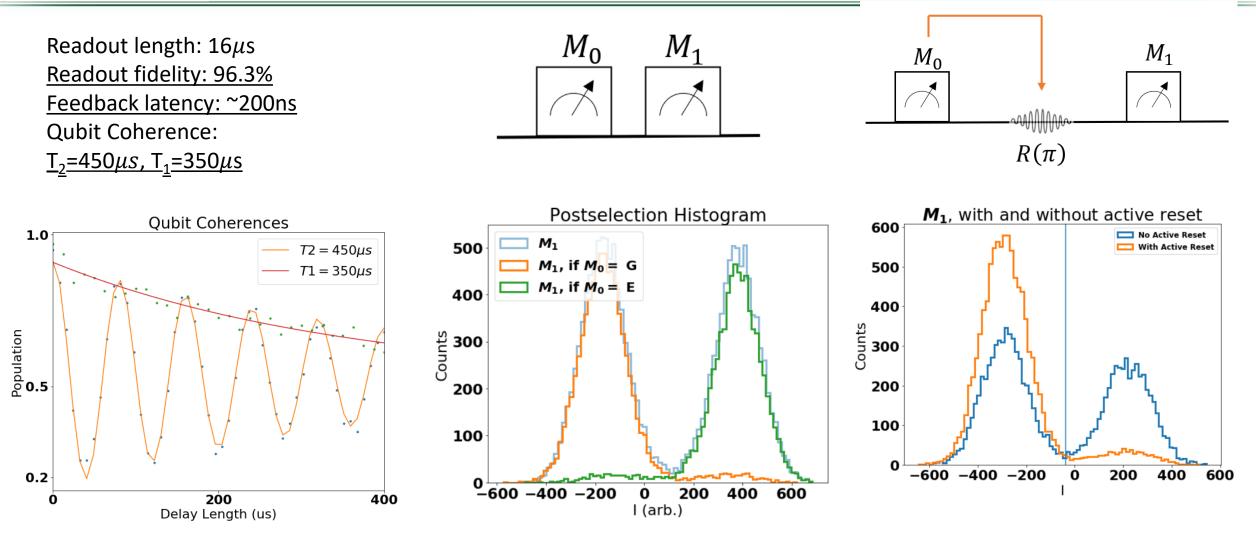
The QICK firmware for QIS

Fermilab

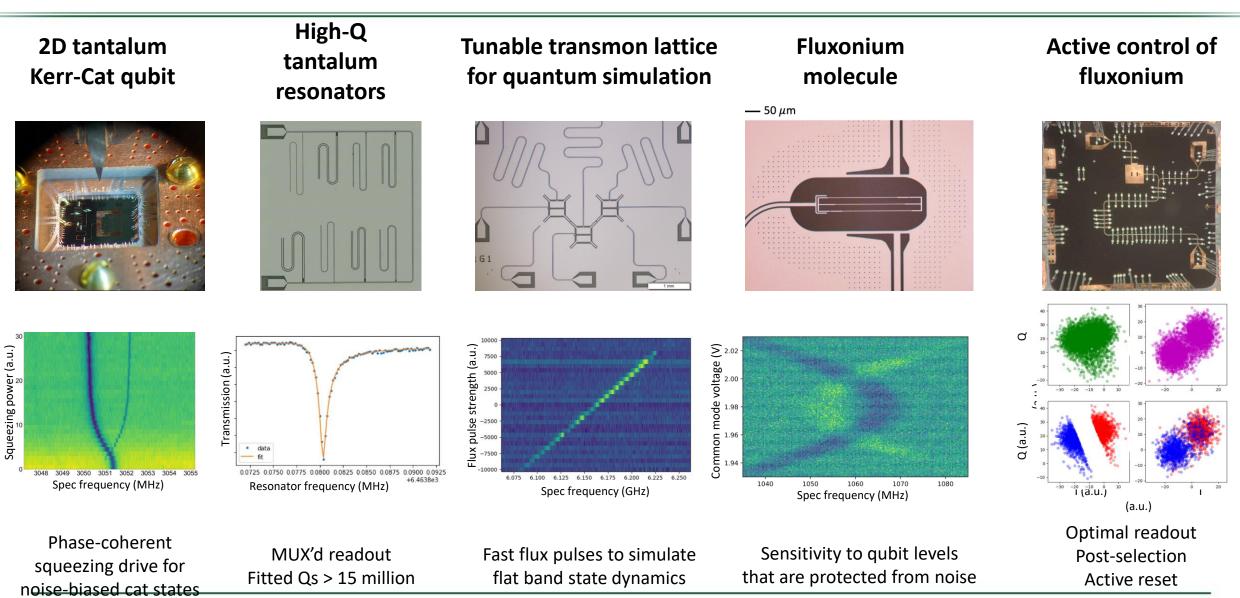

QICK paper made the cover of AIP RSI

	AIP Review of Scientific Instruments		1 🗐 🔊 SUBMIT YOUR ARTICLE		Research Details – We outline state of the art methods in the paper The QICK (Quantum Instrumentation Control Kit): Readout and control			
	HOME BROWSE INFO FOR AUTHORS COLLECTIONS		SIGN UP FOR ALERTS					
	sampler: Recovery efficiency and tribution in Tesla-type pulse gen- efficacy erators cryogenic linear Paul ion trap for to ion-neutral reaction studies		-	for qubits and detectors. <u>arXiv:2110.00557</u> . Published in Research of Scientific Instruments. <u>https://doi.org/10.1063/5.0076249</u>				
			tube linac prototype M. Mayerhofer, J. Mitteneder and G. Dollinger	meeg Merge pull request #42 from openquantumhardware/v0.1 13c5b5f 18 hours ago ts				
				do 📄	cs	fixed?		
	Editor's picks	APR 04 2022 An ion mobility mass spectrometer coupled with a cryogenic ion trap for recording electronic spectra of	Most Read Most Cited APR 26 2022 The QICK (Quantum Instrumentation Control Kit): Readout and control for qubits and detectors	📄 firn	mware	add new IPs used in q3diamond firmware		
	Design of the scintillator imaging An id			📄 gra	aphics	merge in the sphinx and readthedocs stuff fromqick-docs, tweaked so i Added RF schematic to repository update README, add notes to qubit demo		
				📄 har	rdware			
				руг	ro4			
 We opened our work to the scientific community. 				📄 qic	:k_demos	update README, add notes to qubit demo		
•			📄 qic	:k_lib/qick				
https://github.com/openquantumhardware/qick				📄 qui	ick_start	rename test/install notebook		
				-				

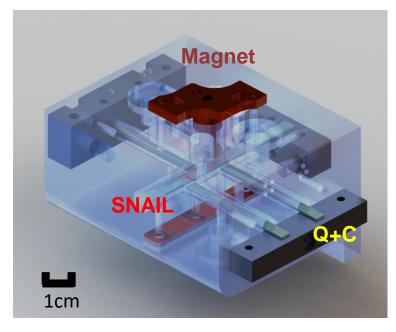
QICK: single qubit measurement at David Schuster's lab, U.C (prepared by Ankur Agrawal).

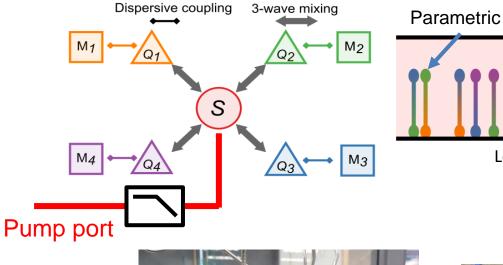

QICK performance measurements using a transmon qubit dispersively coupled to a readout cavity. (a) and(b) Qubit spectroscopy measurements.(c) Qubit Rabi oscillations. (d) T1 and T2measurements (of 119µs and 148µs, respectively). (e) Single shot measurements of a qubit prepared in ground and excited states showing 94.7% fidelity.(f) Randomized benchmarking protocol. Average gate fidelity is Favg=99.93%±0.01% which approaches the estimated coherence-limited gate fidelity of Flim=99.96%.

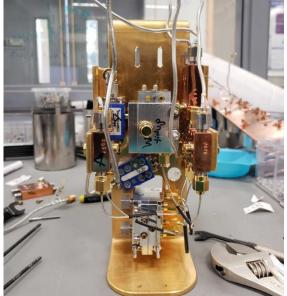
Fluxonium sample measured with RfSoc. (prepared by David Schuster)

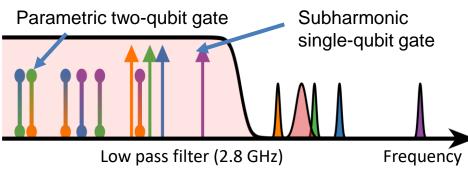


(prepared by Sara Sussman)

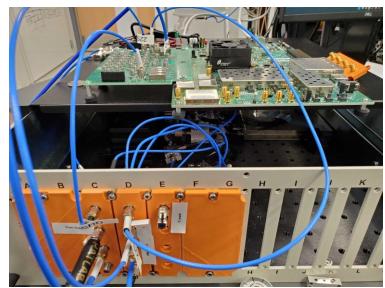





Office of Science



A quantum module with all-to-all gates via parametric control (prepared by Chao Zhou, U. Pittsburg)



QICK

- Currently at Hatlab, the RFSOC board is set up for single qubit characterization.
- We have used this setup to measure tens of qubits over many cool downs, above is a typical result.
- We got similar results as we have gotten before with Keysight cards, and the high freq DDS has greatly simplified our qubit control circuit.
- More complicated multi-qubit experiments with ZCU216 are working in progress.

QICK team (FNAL group supported by QUANTUM) and collaborations

- QICK developers, testing, and experiments:
- Fermilab: Ken Treptow, Leo Stefanazzi, Chris Stoughton, Sho Uemura, Neal Wilcer, Martin Di Federico, Silvia Zorzetti, Salvatore Montella, Gustavo Cancelo.
- U. Chicago: David Schuster, Ankur Agrawal, Chunyang Ding, Helin Zhang
- C2QA Princeton: Sara Sussman, Jake Bryon, Jeronimo Martinez, Russell McLellan, Xanthe Croot, Hoang Le, Andrew Houck.
- ANL: Shefali Saxena.
- CNEA, Argentina: Horacio Arnaldi.
- also exchanges with INQNET CONSORTIUM est. 2017 : CALTECH/JPL/FNAL and others including industries with CRADAs and MOUs
- Newer collaborations:
- LBNL AQT: <u>User project approved</u>. Partners: Kasra Nowrouzi, Gang Huang, Neelay Fruitwala, Yilun Xu.
- C2QA Hatlab: Michael Hatridge, Chao Zhou, Mingkang Xia.
- SQMS: Anna Grassellino, Alex Romanenko, and SQMS control team.
- Q-NEXT: Andrew Cleland (UC), Robert Mcdermott, David Awschalom's lab (AMO qubits)
- Nexus: Daniel Bowring et. al.
- Collaborations with industry:
- Amazon AWS: The AWS team is building a software layer to have QICK as a braket backend and on their cloud.
- Other industries have made contact and had a meeting with the team.

Thank you

