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• This talk focus: detectors and processing elements for high energy physics and quantum information science.

• In particular, detectors for cosmological studies of the CMB, DM and DE.

• Those detectors generate very faint signals. SNR is the main issue.

– SNR is improved by working at very low T: 10mK-300mK, depending on the technology.

• Quantum detector signals are likely the smallest power of the class.

• Some computing elements (qubits) in quantum information science are technologically similar.

• Some detectors for quantum networks are also technologically similar.

• Technologically speaking they share some physics principles and properties

– Quantum optics and electrodynamics.

– Made to operate in superconducting regime.

– Operated cryogenically below 1K.

– Independently of the spectrum they are looking at (e.g. microwaves, IR, visible) the detectors translate the signal into an 

electromagnetic output in the RF spectrum (e.g. 1GHz-20GHz).

– Many of those detectors and QIS systems need to be exited by DC or RF signals or pulses.

• This work is largely supported by DOE-QSC and DOE-HEP-Detector R&D and projects.

Warm electronics for control, detection, and readout
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• To highly suppress thermal photons (noise) the input lines place 

attenuators at strategic locations at several T stages inside the 

fridge. 40 to 60 dB typical.

– That places a requirement of power in the warm electronics for 

control and readout.

• Since refrigerator lines are expensive and large, it is highly 

desired to place multiple detectors/qubits on the same 

input/output lines.

– The most successful case is the MKID (Microwave Kinetic 

Inductance Detector) which has proved to place 2000 resonators 

using frequency multiplexing in the 4-8GHz (B. Mazin lab UCSB).

• Typical excitation/control signals are on the order of -90dBm to  

-110dBm depending on the technology and material.

• To keep SNR at the output LNAs are required

– Parametric amplifiers. Sometimes using squeezed params below 

quantum limit noise.

– HEMT ~1K noise T.

Warm and cold electronics for control, detection, and readout
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• The warm electronics for control and readout requires signal generators, 

sometimes AWGs (Arbitrary Waveform Generators) with continuous or 

pulsed signals.

• Frequency multiplexing of continues RF signals of up to several thousand 

tones are used.
– The excitation frequency comb must be clean of harmonics and spurs.

– Typical specifications are: 100dBc/sqrt(Hz), SFDR>70dB.

– Individual power control for every frequency tone.

– Individual frequency control for every frequency tone with a resolution of a fraction of the 

detector BW (e.g. resolution of <1KHz for a typical 100KHz KID).

• Frequency and time domain multiplexing of band limited signals 
– Required for quantum control.

• DC coupled control up to 1GHz of BW

– Some systems require few KHz ramps.

• DC biasing, up to 20 bits.

• What is the best architecture and technology to solve the problem with high 

performance and in the most cost-effective way?

Warm and cold electronics for control, detection, and readout
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A 10 K pixel MKID designed by UCSB (B. 

Mazin)



• Single RF output/input in 4-8 GHz

• MEC required 20 fMESSI for 20Kpixel camera.

• FPGA technology plays a big role the design of complex 

signal generation and readout functions:

• Digital signal processing galore!

– Digital up/down converters.

– Polyphase filter banks.

– Digital filters.

– Channelizers (for synthesis and analysis).

– Optimal control.

2015 fMESSI: 1Kpixel control and readout board by Fermilab-UCSB
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Previous, related work
20K MKID pixel camera (MEC) at 8m Subaru telescope (2018).
https://web.physics.ucsb.edu/~bmazin/projects/mec.html

10K MKID pixel camera DARKNESS at Palomar (2015)
Both instruments in collaboration with Ben Mazin’s Lab (UCSB)
https://web.physics.ucsb.edu/~bmazin/projects/darkness.html

7 years ago!

https://web.physics.ucsb.edu/~bmazin/projects/mec.html
https://web.physics.ucsb.edu/~bmazin/projects/darkness.html


• A fully integrated readout and control system for QIS, quantum networks and superconducting detectors.

– No extra room temperature hardware needed.

• Increased performance: RF control up to 10GHz. DC coupled control up to 2GHz. 1ppm resolution in bias channels. 2ps 

resolution in timing measurements.

– 16 x 14-bit DAC outputs in DC to 10 GHz. I-Q done in digital => you only need half the number of outputs

• Frequency multiplexing of up to 8K channels per board.

• Frequency multiplexed control and readout up to 16 qubits per output/input.

• The cost of the system is $20K including the digital FPGA board and RF custom board.

2021 QICK1: integrated control and readout for detectors and QIS
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Replaces ~$1M, full rack, off-the-shelf with $20K, single pair of boards

RFSoc
FPGA



• 8K channels on a single XCU28DR FPGA, cost $2/channel including the cost of RF warm electronics.
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• Total input: 2GHz per 
feedline.

• 1000 channels, 2MHz 
(typical) separation.

• Channel frequency fine 
adjustment using DDS.

• Channel output measures 
power or single photons.

• Output/input powers 
adjustable.

• Fast digital up/down 
conversion.

x8

1000 channels
Per RF feedline decoded with better than 80dB 
channel separation.

QICK for detectors: CMB, dark matter, dark energy, quantum network, gravitational wave detectors
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QICK for detectors: CMB, dark matter, dark energy, quantum network, gravitational wave detectors

• MKIDs offer SPT upgrade a 

unique opportunity to improve 

science, even reaching Rayleigh 

scattering and kSZ sensitivities 

comparable to CMB-4

• More detectors per area.

• Low res. Spectroscopy.

142dBc/√(Hz) (single tone)

Adam Anderson (FNAL) et al., SPT collab.
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QICK2 for detectors: CMB, dark matter, dark energy, quantum network, gravitational wave detectors

• We have developed QICK2, based on the ZCU216 from Xilinx. 

Compatible with ZCU208.

• MKIDs: 8K channel/board.

• It does not require external analog mixers.

• It covers a spectrum of up to 10GHz with I-Q tones generated in the 

digital domain.

• This is the default for QIS systems we are working with at U.Chicago

(D. Schuster’s lab), Princeton (A. Houck’s lab), Pittsburgh (Hatlab). 

• We are working on a companion RF board that includes amplifiers, 

filters and step power attenuators.

• For 8K channels the cost is $2/KID.

• $1M for 500K channels.
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QICK for detectors: High Mass Axion Searches, BREAD project

Three type of experiments:

Broadband antenna 2-20GHz. Readout requires a fine resolution FFT 

averaged for a long time until a signal is detected.

Photon counting using SNSPDs.

QICK1 used for the antenna readout.

QICK2 for SNSPD control and readout.

QICK1 for control and readout of Quantum Capacitor Detectors.
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QICK for detectors: High Mass Axion Searches, BREAD project

• 500K point FFT every 60usec.

• FFTs are averaged on the FPGA.

• Number of averages is very large (up to days, if needed).

• The analog RF band is preselected by analog hardware.

• Zooming on a slammel spectrum allows for very fine 

frequency resolution.

Lab test with an Agilent noise source 



• SNSPD measurements at FNAL-SCD

• QICK fast timing measurements for quantum networks: < 2ps resolution

– Already triggering and reading photon entanglement experiments (Cristian Peña, et al)

– JPL (Matt Shaw’s group will use QICK).

• QICK to read single SNSPDs and SNSPD arrays for DM and gravitational waves.

– We have a multichannel prototype for single SNSPD (time precision measurement)

– GQuEST recently approved.

QICK2 for detectors: SNSPDs (Fermilab, INQNET C. Peña. et al., JPL M. Shaw et al., NIST, Caltech M. Spiropulu et al.)
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QICK Software for QIS (similar model can work for detectors)
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• Quantum programs are developed in python using the PYNQ environment and Jupyter notebooks.

• Quantum programs run on Linux in the RFSoC FPGA 4 core processor.

– QICK is kerberized and on the network.

• All critical functions are executed in the programmable logic.

• In progress: Software layers to make QICK a backend for Qiskit and Braket. OpenQasm3



The QICK firmware for QIS
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DAC1 f.  .  .

f1 f2 f3
fN

∆f=200MHz ∆f=200MHz

Frequency and time multiplexing 
available on every DAC (and ADC)

Highly configurable to 
accommodate qubit types 
and number of channels



QICK paper made the cover of AIP RSI
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Research Details
– We outline state of the art methods in the paper The QICK 

(Quantum Instrumentation Control Kit): Readout and control 
for qubits and detectors. arXiv:2110.00557. Published in 
Research of Scientific Instruments.
https://doi.org/10.1063/5.0076249

https://github.com/openquantumhardware/qick

• We opened our work to the scientific community. 

https://arxiv.org/abs/2110.00557
https://urldefense.proofpoint.com/v2/url?u=https-3A__doi.org_10.1063_5.0076249&d=DwQGAg&c=gRgGjJ3BkIsb5y6s49QqsA&r=9vlZN4ExZed3BRnQAS4W1r9pM9wr5hOR2tPgfXRVT64&m=2xKmjY95Ijjr6pGnKnMVmi45m6n05idApc3OUYu4BaJg3btuH4X-MmmRcuH4rnVO&s=ijmBatjGVe23rueQRKd6TmOWPoem93YtzjfF2zDza1E&e=
https://github.com/openquantumhardware/qick


Single qubit measurement 
State of the art single shot fidelity F=94.7% (without parametric 
amplification)
Randomized benchmarking fidelity of Favg=99.93±0.01%, close to the 
estimated coherence-limited gate fidelity of Flim=99.96%.

QICK: single qubit measurement at David Schuster’s lab, U.C (prepared by Ankur Agrawal).

QICK performance measurements using a transmon qubit dispersively coupled to a readout cavity. 
(a) and(b) Qubit spectroscopy measurements.(c) Qubit Rabi oscillations. (d) T1 and T2measurements (of 119μs and 
148μs, respectively). (e) Single shot  measurements of a qubit prepared in ground and excited states showing 94.7% 
fidelity.(f) Randomized benchmarking protocol. Average gate fidelity is Favg=99.93%±0.01% which approaches the 
estimated coherence-limited gate fidelity of Flim=99.96%.
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Readout length: 16𝜇s
Readout fidelity: 96.3%
Feedback latency: ~200ns
Qubit Coherence:
T2=450𝜇𝑠, T1=350𝜇s

Fluxonium sample measured with RfSoc.  (prepared by David Schuster)
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Tunable transmon lattice
for quantum simulation

High-Q 
tantalum

resonators

2D tantalum 
Kerr-Cat qubit

Fluxonium 
molecule

Active control of
fluxonium

MUX’d readout
Fitted Qs > 15 million

Optimal readout
Post-selection

Active reset

Phase-coherent
squeezing drive for 

noise-biased cat states

Fast flux pulses to simulate
flat band state dynamics

Sensitivity to qubit levels
that are protected from noise

Spec frequency (MHz)

Sq
u

ee
zi

n
g 

p
o

w
e

r 
(a

.u
.)

Fl
u

x 
p

u
ls

e 
st

re
n

gt
h

 (
a.

u
.)

Spec frequency (GHz)

C
o

m
m

o
n

 m
o

d
e 

vo
lt

ag
e 

(V
)

Spec frequency (MHz)

Tr
an

sm
is

si
o

n
 (a

.u
.)

Resonator frequency (MHz) I (a.u.) I 
(a.u.)

Q
 (

a.
u

.)
 

Q
 

(a
.u

.)

(prepared by Sara Sussman)



A quantum module with all-to-all gates via parametric control (prepared by Chao Zhou, U. Pittsburg)

1cm

SNAIL

Q+C

Magnet

FrequencyLow pass filter (2.8 GHz)

Subharmonic 

single-qubit gate

Parametric two-qubit gate

Pump port QICK

➢ Currently at Hatlab, the RFSOC board is set up for single 
qubit characterization.

➢ We have used this setup to measure tens of qubits over 
many cool downs, above is a typical result.

➢ We got similar results as we have gotten before with 
Keysight cards, and the high freq DDS has greatly simplified 
our qubit control circuit.

➢ More complicated multi-qubit experiments with ZCU216 are 
working in progress.
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• QICK developers, testing, and experiments:

• Fermilab: Ken Treptow, Leo Stefanazzi, Chris Stoughton, Sho Uemura, Neal Wilcer, Martin Di Federico, Silvia Zorzetti,  

Salvatore Montella, Gustavo Cancelo.

• U. Chicago: David Schuster, Ankur Agrawal, Chunyang Ding, Helin Zhang

• C2QA Princeton: Sara Sussman, Jake Bryon, Jeronimo Martinez, Russell McLellan, Xanthe Croot, Hoang Le, Andrew Houck.

• ANL: Shefali Saxena.

• CNEA, Argentina: Horacio Arnaldi.

• also exchanges with INQNET CONSORTIUM est. 2017 : CALTECH/JPL/FNAL and others including industries with CRADAs and 

MOUs

• Newer collaborations:

• LBNL AQT: User project approved. Partners: Kasra Nowrouzi, Gang Huang, Neelay Fruitwala, Yilun Xu.

• C2QA Hatlab: Michael Hatridge, Chao Zhou, Mingkang Xia. 

• SQMS: Anna Grassellino, Alex Romanenko, and SQMS control team. 

• Q-NEXT: Andrew Cleland (UC), Robert Mcdermott, David Awschalom’s lab (AMO qubits)

• Nexus: Daniel Bowring et. al.

• Collaborations with industry:

• Amazon AWS: The AWS team is building a software layer to have QICK as a braket backend and on their cloud.

• Other industries have made contact and had a meeting with the team.

QICK team (FNAL group supported by               )  and collaborations
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Thank you
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