SNSPD cold readout: activities and plans

Davide Braga

Snowmass Workshop 7/18/2022
DOE Microelectronics Co-Design Research:
“Hybrid Cryogenic Detector Architectures for Sensing and Edge Computing enabled by new Fabrication Processes”

Advancement of two complementary classes of cryogenic state-of-the-art single-photon and particle detectors:

- the **Skipper CCD-in-CMOS** silicon detector
- a **hybrid detector platform based on superconducting nanowires**

Development and co-design of:

- advanced **fabrication and integration techniques**
- novel optimized **hybrid readout architectures**
- cryo-ASICs and cryotron-based superconducting electronics for **integrated sensing** and data reduction at source, through **feature extraction** and **edge computing**.
Hybrid nanowire-based superconducting detector platform

Hybrid architecture for cryogenic detectors, based on the co-design of:
1 – superconducting sensor (SNSPD),
2 – nanocryotron-based superconducting electronics (xTRON),
3 – cryoCMOS ASIC in nanometer scale (22nm FDX).

- develop the technology required for overall integration at cryogenic temperatures (Matt Shaw – JPL)
- SC and cryo-CMOS modeling and extraction (Synopsys, EPFL)

Goal: scalable, large count detector with edge computing and integrated sensing → on-chip DNN and physics-driven hardware codesign (e.g FNAL’s Autoencoder)

Device-circuits-system codesign will concurrently enable large channel count, power optimization, impedance matching, edge compute and feature extraction, and data processing
Superconducting Nanowires Detectors

As PHOTON DETECTORS:
• Highest performing detectors available for time-correlated single photon counting from the deep UV to the mid-infrared
• Demonstrated detection efficiencies as high as 98% at 1550 nm
• Timing jitter below 3 ps
• Effectively zero dark count rates
• Intrinsic photon number resolution
• Maximum count rates exceeding 1 Gcps in arrays

As PARTICLE DETECTORS:
• Can have high segmentation (~10μm “pixels”)
• Can be truly edgeless detector (important for beam monitoring)
• Operation in high magnetic field (5T)
• Radiation hardness to be investigated at Fermilab test beam facility

Exploited for photon detection (classical and quantum optics and communication)

Unique capabilities for far-forward detectors that operate close to the beam (high T, high radiation, high segmentation)
Superconducting Integration (Matt Shaw, JPL)

- Caltech/JPL to develop a nanofabrication process which will enable indium bump bonding of SNSPD focal planes to interposer structures,
- Evaluate the limits of ultra-high-density cryogenic microwave interconnects,
- and perform interface tests between SNSPD devices and digital readout electronics developed at FNAL and MIT.
Nanocryotrons (MIT, K.Berggren)

- Family of devices based on superconducting nanowires
- Can thus be monolithically integrated with the nanowire sensor
- Can be configured to operate as comparators, logic gates, signal level shifters, memories, shift registers...
- Impedance matching drive high-impedance loads and drive following cryoCMOS stage

→ Ideally suited for feature extraction and data reduction at the edge

- Evaluating radiation hardness (fabrication and architecture) and optimal energy budgeting
- Developing increasingly complex circuits as well as work on yield
CryoCMOS

- Operation at <4K demonstrated in modern, state-of-the-art commercial processes (no special processing)

- Leverage low power, high performance ASICs for signal conditioning, time-tagging, data concentrator/edge computing, and serialization/readout

- Highlights:
 ○ SiGe HBT (high performance LNA)
 ○ FDSOI with backgate control to compensate for threshold increase at cryo

- Fermilab and EPFL currently collaborating on EAD-compatible cryomodels for Global Foundries’ 22nm FDSOI
SiGe Heterojunction Bipolar Transistors (HBTs) at cryogenic temperatures

• Unlike conventional bipolar transistors, when cooled SiGe HBTs exhibit improved frequency response, current gain, noise, bandwidth, output conductance and other performance metrics.

• BiCMOS (SiGe HBT + Si CMOS) platform ideal mixed-signal technology that marries high-performance SiGe HBTs for analog, RF, and microwave circuits, with Si CMOS to support highly-integrated system functionality.

• Fabricated on large wafers (300 mm) at high yield and low cost using conventional silicon processing techniques and silicon economy-of-scale.

• SiGe HBTs cooled to temperatures as low at 70 mK demonstrated operability for a variety of interesting circuit designs (gain of 2000 at 100 mK at only a few µW dissipation).

• At sub-K, the amplification principle becomes fundamentally quantum mechanical in nature, as tunneling becomes the dominant transport mechanism. Constant operation across temperature below ~7K.

SC and cryo-CMOS modeling and extraction

In collaboration with Synopsys
- SC electronics models (MIT, FNAL)
- cryoCMOS models (FNAL, EPFL)
- Prototyped a test structure for 1/f noise measurement

Now simulating CMOS + xTron + SNSPD
cryoASIC readout and control

- xTron driving directly comparator for binary readout
- Active quenching biasing from ASIC can reduce the deadtime of the nanowires

- CryoCMOS allows for fine resolution TDCs for time tagging
- Fermilab prototyped a 22nm cryo TDC for 5ps resolution and >10ns range (7b fine, 10b coarse), <0.5mW

- Digital readout:
 - Event driven, serializer, line drivers, etc.

- Feature extraction:
 - Correlation between detector layers
 - Event selection/reconstruction
 - DNN
Example of recent on-chip DNN and physics-driven hardware codesign at Fermilab (Farah Fahim, Nhan Tran)

- Physics inspired autoencoder
- Ultrafast inference every 25 ns
- Operation in extreme radiation environment (use of triple modular redundancy for SEE mitigation)
- Successful chip test results
- hls4ml- AI ecosystem for fastML application, widespread community adoption
- Part of MLCommons™ with Open Datasets and Tools to Drive Democratization of Machine Learning
Collaborators

6 Thrust:

cryoASIC
(Lead: Davide Braga, Fermilab)

Skipper-in-CMOS
(Lead: Juan Estrada, Fermilab)

Superconducting Electronics
(Lead: Karl Berggren, MIT)

Superconducting Detectors
(Lead: Whitney Armstrong, Argonne)

Cryogenic Integration
(Lead: Matthew Shaw, JPL)

Codesign Tools
(Lead: Ricardo Borges, Synopsys)