Future Advances in Photon-Based Neutrino Detectors

Josh Klein University of Pennsylvania

White Paper

Future Advances in Photon-Based Neutrino Detectors: A SNOWMASS White Paper

Joshua R. Klein,^{94, *} Tomi Akindele,^{68, †} Adam Bernstein,^{68, †} Steven Biller,^{90, †} Nathaniel Bowden,^{68, †} Jason Brodsky,^{68, †} D.F. Cowen,^{93, †} Michael Ford,^{68, †} Julieta Gruszko,^{16, 118, †} Logan Lebanowski,^{94, †} Aobo Li,^{16, 118, †} Viacheslav A. Li,^{68, †} Wei Mu,^{35, †} J. Pedro Ochoa-Ricoux,^{17, †} Gabriel D. Orebi Gann,^{15, 67, †} Mayly Sanchez,^{53, †} Robert Svoboda,^{14, †} Matthew Wetstein,^{53, †} Michael Wurm,^{18, †} and Minfang Yeh^{8, †} (Editors and Contributors)

+about 300 co-signers from 9 experimental collaborations https://arxiv.org/pdf/2203.07479.pdf

Grew out of photon-based workshop held in December 2020

Not comprehensive! There was a bias toward "warm", monolithic detectors

"Photon-Based" "Photon-based Neutrino Detector" is almost redundant

"Photon-Based"

Success to date has been driven by several factors:

- Low cost
- Scalability
- Adaptability
- Precision modeling
- Analysis simplicity

"Photon-Based" With so much success, what is left to do?

- Improve precision
 - Bigger detectors for better statistics
 - Better calibrations and simulation models
- Increase sensitivity
 - Better reconstruction (~better timing, pixelization or segmentation)
 - Better energy resolution (~better photon counting)
 - Better particle ID
- Broaden the program
 - New scintillating materials
 - Isotopic "loading" for various physics programs
 - Hybrid Cherenkov/scintillation detectors

Goal: A very broad range of world-leading physics

At the last Snowmass, this was mostly an idea...

High energy

- particle ID and final states from "chertons"
- Large detector mass for high statistics
- "scintons" for reconstruction of sub-Cherenkov threshold recoils

Low energy

- energy resolution from scintons for solar, reactor, 0vββ...
- Direction reconstruction from chertons rejects/accepts solar vs

There are now many ways to do this!

Adjust Cher/Scint Ratio

Other possibilities:

- LAB with "thin" PPO (Jinping)
- Vanilla mineral oil (MiniBooNE)
- Oil+a little scintillator
- Water+WLS?

(Angular Distribution)

Not really instrumentation but an analysis approach----

CHESS at LBNL Measurements

Caravaca et al, EPJC (2017) 77:811

"FlatDOT"

Gruszko et al, JINST 14 (2019) 02, P02005

Angular distribution

increased PMT hit density under Cherenkov angle → sufficient granularity

Timing

Two choices:

- Improve sensor timing
 - Lots of other benefits, like better reconstruction
 - But increases cost, in some cases dramatically
 - Dispersion in big detector helps!
 - But scattering hurts

• Slow down scintons with slow fluor

- Relatively easy and inexpensive
- Broadens reconstruction resolution
- May have impact on overall light yield

Fast(er) Sensors

Timing

Timing

Slow(er) Scintillator

Can also slow down scintillator by using a small amount of fluor---Also (obviously) increases Cher/Scint ratio

Timing

Solar peak in scintillator event-by-event!

BNL 30 t WbLS

Isotopic Loading

Physics programs of these detectors is substantially broadened by adding isotopes

- Gd loading in LS for neutron detection
- Xe loading in LAr to shift UV light (and increase light yield)
- ⁶Li loading in LS for excellent neutron pulse-shape discrimination
- Xe loading in LS for $0\nu\beta\beta$

⁶Li loading in plastic scintillator for PSD

Te loading in LAB-PPO for $0\nu\beta\beta$

Isotopes easily loaded in WbLS and LS

Tongot	Looding (moss)	Potential Applications
Target	Loading (mass)	Fotential Applications
Indium	>8% In	Solar ν
Tellurium	> 6% Te	0 uetaeta
Lithium	0.1% ⁶ Li	Reactor $\bar{\nu}$; excellent PSD
	$>0.2\%$ 6 Li	Reactor $\bar{\nu}$; super PSD with improved optics
Boron	>0.5%	Dark Matter veto, reator $\bar{\nu}$
Potassium	>1%	Calibration for LS detectors
Iron, Strontium	ppm to 1%	Nuclear waste management,
		environmental tracers
Gadolinium	0.1% Gd	Dark matter veto
		Reactor monitoring
		Reactor $\bar{\nu}$ oscillations
High-Z elements	10-15%Pb	Solar ν
-		Calorimeters
		Medical QA/AC

Other Ideas

LiquidO---tracking using "opaque" scintillator+fibers

Artemis: Cher/scint separation in LAr

SLIPS---suspend LS on glycol

Photo-ionizing dopants in LAr+Xe Modeled as a photo-ionization effect 1 GeV Proton >50% enhancement

Instrumentation Wish List

- Fast, high-photon detection efficiency, large-area, low-cost sensors (duh)
- Narrow-band fluors (e.g., nanoparticles? Perovskites?)
- Dichroic filters on curved surfaces and for lower-cost
- Large-area photon sensors with better long-wavelength sensitivity
- SiPMs/MPPCs with lower warm dark rates
- High light-yield scintillators with longer attenuation lengths
- Ultra-filtration for radiologicals in WbLS