

Low-background quantum sensing at Fermilab's underground facility

D. Bowring

Cross Frontier Sessions: Quantum Science & Technology (QST) Instrumentation (IF) & Underground Facilities (UF)

20 July 2022

Low-threshold quantum sensing R&D benefits from a purpose-built, low-background facility.

Talk outline:

- 1. Fermilab facility overview
- 2. Ongoing and planned R&D
- 3. "Community needs" assessment

This talk focuses on FNAL capabilities and community needs. Follow links for more info on individual R&D efforts.

MINOS underground experimental area currently hosts several active R&D efforts, and more are

planned.

- 107-meter rock overburden (300 mwe)
- Groups hosted underground include:
 - NEXUS
 - SENSEI
 - MAGIS-100 (see <u>Snowmass poster</u>)
 - NQI Quantum Science Center (ORNL)

NEXUS: low-background He dilution fridge

- Developed by FNAL detector R&D, SuperCDMS, and Northwestern University
- 10 mK base temp. (CryoConcept HEXADRY)
- Internal lead shield protects RF and DC payload stages; External mu-metal shield
- 3.4 muons/cm2/day; O(100) DRU background rate w/ shield in place
- Planned DD generator gives 2.45 MeV n's for recoil studies
- See below for experimental program summary

QUIET and LOUD: QSC facilities under development

- Quantum Science Center (ORNL-led NQI Center) building two companion facilities at Fermilab:
 - LOUD: high-throughput dilution refrigerator above-ground at Fermilab, for device characterization.
 - QUIET: same model fridge, but shielded and in an underground cleanroom, near NEXUS. Target here is 100 DRU for low-background studies of quantum sensors and other devices.

LOUD fridge received; commissioning begins soon.

Development of a pulsed, scanning laser for low energy calibration of cryogenic devices

Many science applications: understand phonon transfer in materials, quasiparticle poisoning, position-sensitivity of QIS devices to energy deposits, ...

Device-agnostic design: qubits, MKIDs, (insert your favorite cryogenic device here)

Anticipated specs:

- ~1.5" x 1.5" scanning area
- <100μm spot size
- ~10μm position resolution
- O(100)Hz scanning speed
- O(μs) pulse width
- >10mK operating temperature

Nearing first 100mK demonstration (right)

Details: Snowmass Poster by K. Stifter

- (a) prototype laser scanning device
- (b) Scannable area of ~1.5" x 1.5"
- (c) Full CAD model of the laser scanning device
- (d) Prototype device being fit in dilution refrigerator

RFSoC for quantum device readout and control

- Xilinx RFSoC-based Quantum Instrument Control Kit (QICK)
- https://arxiv.org/pdf/2110.00557.pdf
- Eight ADC/DAC channels for direct pulse synthesis at GHz frequencies
- Open source software, firmware. Demo code is on GitHub.

Device R&D programs include:

Kinetic Inductance Detectors

- Lower thresholds [100 eV → ~5(0.5) eV]
- − Increase resolution [σ_E = 40 eV rms → ~1-7(0.1) eV]
- Absolute energy calibration capability.
 https://link.springer.com/article/10.1007/s10909-022-02753-5

Transition Edge Sensors

- SuperCDMS HVeV detector R&D: TES coupled to gram-scale Si absorber
- Single e-h pair sensitivity with 3 eV energy resolution

Quantum Capacitance Detector

- Photon shot-noise-limited THz detectors based on Cooper Pair Box
- NEP < 10-20 W/Sqrt Hz at 1.5 THz
- https://doi.org/10.1117/1.JATIS.7.1.011003 (P. Echternach, JPL/Caltech)

Superconducting qubits

- Studying the effect of ionizing radiation (cosmics, gammas) on qubit decoherence (<u>C. Wilen et al., Nature 594, pp 369–373 (2021).</u>)
- lonizing backgrounds relevant for axion DM searches, but also QC error correction.
- Four-qubit array from U. Wisconsin-Madison currently taking data.

SENSEI: Counting single electrons with a CCD

PHYSICAL REVIEW LETTERS 121, 061803 (2018)

PHYSICAL REVIEW APPLIED 17, 014022 (2022)

SENSEI: First Direct-Detection Constraints on Sub-GeV Dark Matter from a Surface Run

Michael Crisler, 1,* Rouven Essig, 2,† Juan Estrada, 1,‡ Guillermo Fernandez, $^{1,\$}$ Javier Tiffenberg, $^{1,\parallel}$ Miguel Sofo Haro, $^{1,3,\$}$ Tomer Volansky, 4,5,** and Tien-Tien Yu $^{6,7,\uparrow\uparrow}$

(SENSEI Collaboration)

Dark photon DM (A') absorbed by electron with coupling ϵ

Liron Barak, ¹ Itay M. Bloch, ¹ Ana Botti, ^{2,3} Mariano Cababie[©], ^{2,3}, ⁸ Gustavo Cancelo, ³
Luke Chaplinsky, ^{4,5} Fernando Chierchie, ³ Michael Crisler, ³ Alex Drlica-Wagner, ^{3,6,7} Rouven Essig, ⁴
Juan Estrada, ³ Erez Etzion, ¹ Guillermo Fernandez Moroni, ³ Daniel Gift, ^{4,5} Stephen E. Holland, ⁸
Sravan Munagavalasa, ^{4,5} Aviv Orly, ¹ Dario Rodrigues, ^{2,3} Aman Singal, ⁵ Miguel Sofo Haro, ^{3,9}
Leandro Stefanazzi, ³ Javier Tiffenberg, ³ Sho Uemura, ¹ Tomer Volansky, ¹ and Tien-Tien Yu¹⁰
(SENSEI Collaboration)

Breakthrough in understanding and quantifying e- "dark rates"

A note on community needs:

- A standard set of radiation calibrations would make it much easier for us all to directly compare backgrounds between facilities.
- We will be iterating between design, simulation, and testing a
 lot in the coming years. Healthy, multi-disciplinary
 collaborations will significantly shorten this cycle and make
 us all more productive.
- Who makes the qubits we spend months studying? Industrial partners may want the opportunity to provide devices for characterization in our facilities.

Acknowledgements

- Thanks to my FNAL colleagues for contributing material to this talk:
 - K. Stifter
 - D. Baxter
 - D. Temples
 - R. Khatiwada
- Collaborating institutions include:
 - NQI Quantum Science Center (ORNL)
 - U. Wisconsin Madison
 - Northwestern University
 - SLAC

