Fermilab **Energy** Office of Science

Beam background studies at C³

Tim Barklow (SLAC), <u>Lindsey Gray</u> (FNAL), Elias Mettner, Abdollah Mohammadi (UW-Madison), Dimitris Ntounis, Caterina Vernieri (SLAC) Snowmass 2022 22 July 2022

bold - did most of the work :-)

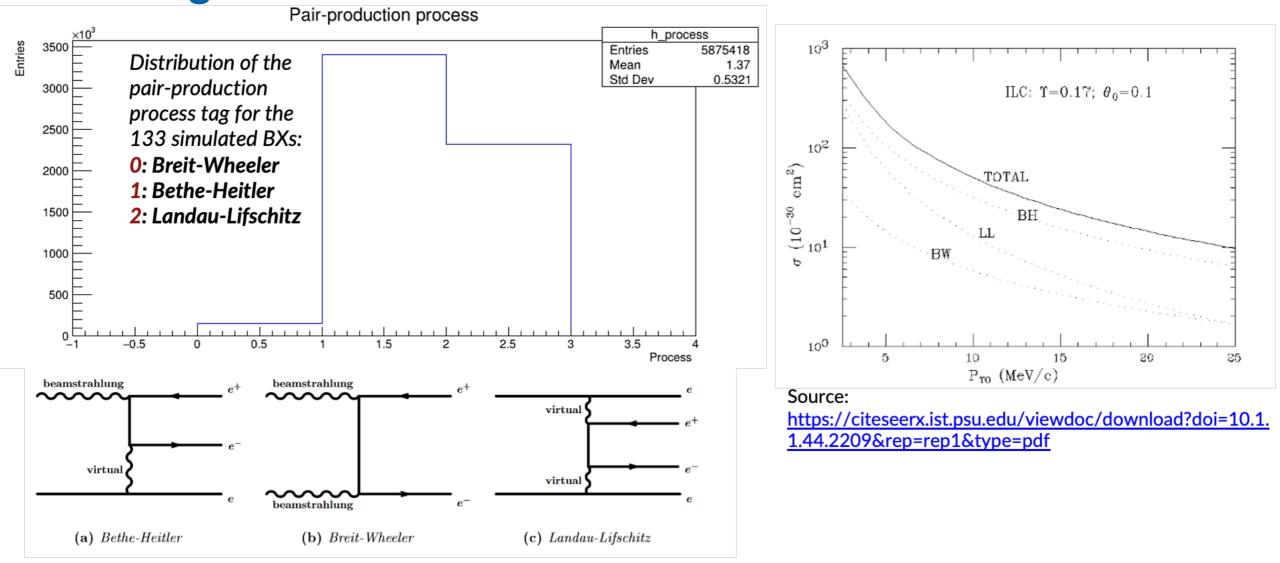
Background Simulations at C³

- Linear collider machine and beam backgrounds play a significant role in:
 - Detector design (occupancies of innermost tracking layers)
 - Ultimate physics reach (fake rate / misreconstructions from spurious hits)
- Up to now no estimate of these backgrounds for C³ beam configuration
 - We have been assuming ILC-like physics performance of an SiD-like detector @ C³
 - Here we show first estimates for the pair-production backgrounds without hadron photoproduction (effectively a 10% increase to what we will see)
 - Other machine backgrounds (tertiary muons, etc.) to come later, they are smaller effects
- We will see:
 - That we can start to answer the question if C³ is no worse than ILC or CLIC from pairbackground perspective
 - Spoiler seems like yes, with some detector optimization
 - Interesting considerations in developing accurate simulations at scale

C3 Parameters

- Input values to simulation derived from C3 optics and dynamics simulations @ 250 GeV CoM
 - Started this project with some guesses due to incomplete information
 - Now have complete configuration of the machine from background simulation perspective
- Note that bunch/repetition structure at C3 different from ILC

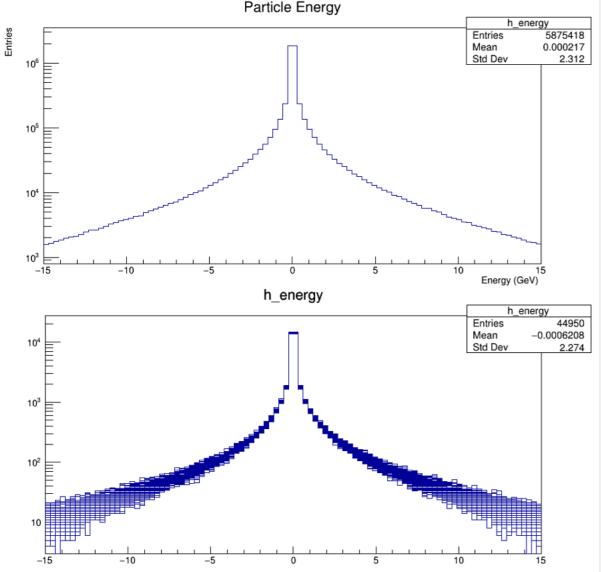
Parameter	Units	Value
β_x^*	mm	12
β_y^*	mm	0.12
$\epsilon_{N,x}^*$	nm	900
$\epsilon^*_{N,y}$	nm	20
σ_x^*	μm	210.12
σ_y^*	μm	3.13
σ_z^*	μm	100
n_b		133
frep	Hz	120
N		$6.25 \cdot 10^{9}$
θ_c	rad	0.014

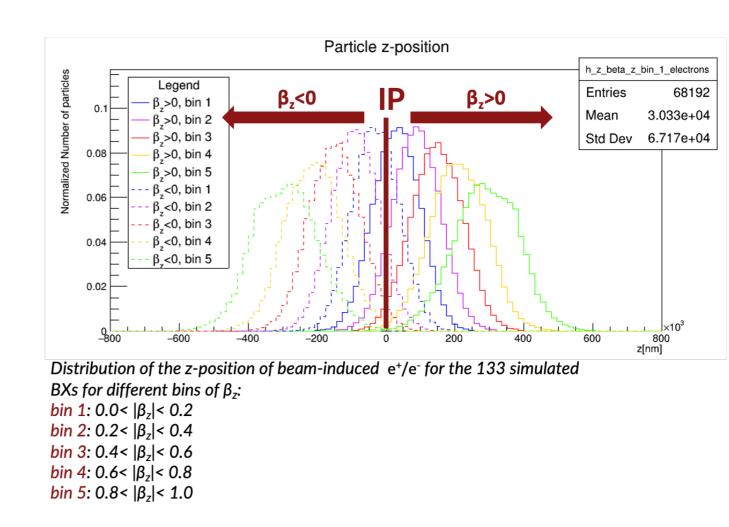

• The emittances on the table are normalized. The transverse beam size is calculated as:

$$\sigma_{x,y}^* = \sqrt{\epsilon_{x,y}^* \beta_{x,y}^*} = \sqrt{\frac{\epsilon_{L,x,y}^* \beta_{x,y}^*}{\gamma}}, \ \gamma = \frac{E}{m_e c^2} = \frac{\sqrt{s}}{2m_e c^2}$$

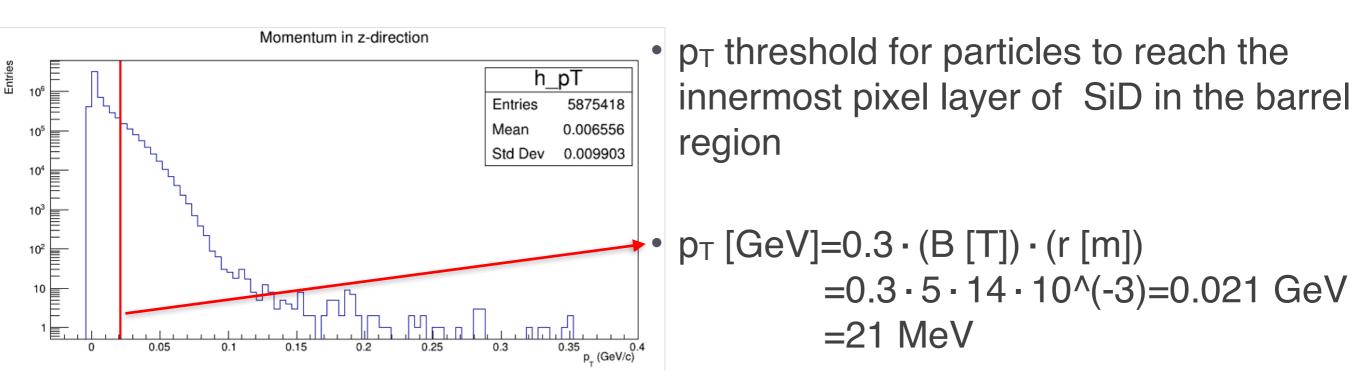
	Emilio's Values
0.1%	0.3%
Gaussian	Flat
0	5
0	0.2
0	0
0	Thanks Emilio! 0
0	0
	Gaussian 0 0 0 0

Guinea Pig and C³

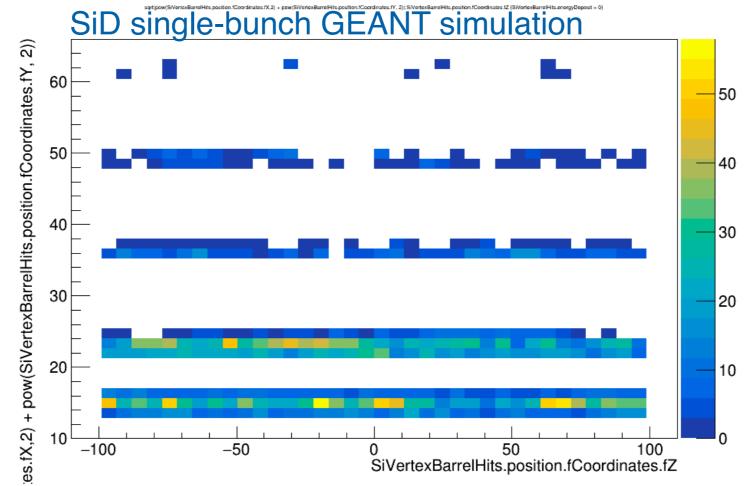



Source: https://bib-pubdb1.desy.de/record/405633/files/PhDThesis_ASchuetz_Publication.pdf

- To simulate the pair background we use the Guinea-Pig (GP) program
 - As configured for this study, simulates the primary production modes production of e+/epairs from beam and beamstrahlung initiated backgrounds
 - There are additional handles for hadron photoproduction but GP's implementation is known to be inaccurate (work beginning on more accurate simulation)


Raw GP Results

- We generated 133 bunches configured with the C³ parameters ensuring unique random seeds to simulate a full bunch train
 - Simulation of e+/e- propagation through bunch charge is apparent and consistent with expectations
 - Sub-distributions per bunch consistent with each other
 - Average of 44176 particles per bunch, observed expected steeply falling energy spectrum


Occupancy Back-of-the-envelope

- Expect ~528k particles to reach innermost pixel layer per train
 - Majority of particles are very boosted / forward
 - For reference ~3900 particles with $p_T > 21$ MeV per bunch
 - 3% occupancy per train for 25x25 micron pixels, assuming a cylinder of pixels with perfect packing as the innermost layer
 - For comparison ILC is 8% occupancy with a 2000 bunch-long train
- With alterations to the readout electronics schema compared to ILC baseline this occupancy is feasible with a commensurate increase in power budget

Towards Full Simulation

- · Hot off the press and even more recently reproducible
- Using slightly modified geometry shipped with dd4hep with most recent SiD pixel barrel description

🚰 Fermilab

- ~2000 hits in the first barrel layer in a single bunch (~3% occupancy for 25x25um)
- Simulation time is roughly 1 hour per bunch (several routes for improvement)
- First results ~consistent with back-of-the-envelope expectation
 - Need to check endcaps, occupancy very angle-dependent

Conclusions / Plans

- Simulated exact parameters for C3 using Guinea-Pig++ event generator
 - For a full C³ bunch train
- C³ beam parameters not inconsistent with high quality physics program from occupancy perspective, but more complete studies needed
 - Per-bunch-train occupancy is less than that of ILC and CLIC 3% vs 8%
 - Bunch structure significantly different 120 Hz train repetition, 133 bunches per train
 - Electronics for this bunch configuration will have different power profile from ILC spec
 - However, still manageable from material/power budget perspective
 - Can take some hints from LHC-developed architectures
- Future plans:
 - Generate full suite of backgrounds and develop complete simulation of C³ environment
 - Adopt full simulations in use by FCC/CLIC for detector optimization
- This is only the beginning of these studies, your scrutiny and feedback is appreciated!

