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A novel route to a linear e+e- collider…
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Breakthrough in the Performance of RF Accelerators
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RF power coupled to each cell – no on-axis coupling

Full system design requires modern virtual prototyping

Electric field magnitude produced when RF manifold feeds alternating cells equally

Optimization of cell for efficiency (shunt impedance)

● Control peak surface electric and magnetic fields

Key to high gradient operation

Tantawi, Sami, et al. PRAB 23.9 (2020): 092001.



Cryo-Copper: Enabling Efficient High-Gradient Operation 
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Cryogenic temperature elevates performance in 

gradient

Material strength is key factor

Impact of high fields for a high brightness injector may 

eliminate need for one damping ring

Operation at 77 K with liquid nitrogen is simple and 

practical

● Large-scale production, large heat capacity, 

simple handling

● Small impact on electrical efficiency  Cahill, A. D., et al. PRAB 21.10 (2018): 102002.

Cryogenic temperature elevates performance in 

gradient

● Increased material strength is key factor

● Increase electrical conductivity reduces pulsed 

heating in the material



           Accelerator Complex
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8 km footprint for 250/550 GeV CoM ⟹ 70/120 MeV/m

● 7 km footprint at 155 MeV/m for 550 GeV CoM – present Fermilab site

Large portions of accelerator complex are compatible between LC technologies 

● Beam delivery and IP modified from ILC (1.5 km for 550 GeV CoM)

● Damping rings and injectors to be optimized with CLIC as baseline

● Costing studies use LC estimates as inputs
C3 Parameters C3 - 8 km Footprint for 250/550 GeV



Implementation Task Force Assessment for Snowmass
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Great potential… need to demonstrate the approach at scale!!

https://indico.fnal.gov/event/54953/sessions/20614/attach
ments/156153/205983/ITFreportDRAFT-July19.pdf 

https://indico.fnal.gov/event/54953/sessions/20614/attachments/156153/205983/ITFreportDRAFT-July19.pdf
https://indico.fnal.gov/event/54953/sessions/20614/attachments/156153/205983/ITFreportDRAFT-July19.pdf


Ongoing Technological Development
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Modern Manufacturing
Prototype One Meter Structure

Preliminary Alignment and 
Positioning 

High Accelerating Gradients
Cryogenic Operation

Integrated Damping
Slot Damping with NiChrome Coating



Accelerator Design and Challenges
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Accelerator Design 
● Engineering and design of prototype cryomodule 

underway
Focused on challenges identified with community 
through snowmass (all underway)
● Gradient – Scaling up to meter scale cryogenic tests
● Vibrations – Measurements with full thermal load
● Alignment – Working towards raft prototype
● Cryogenics – Two-phase flow simulations to full flow 

tests
● Damping – Materials, design and simulation
● Beam Loading and Stability - Thermionic beam test
● Scalability – Cryomodules and integration
Laying the foundation for a demonstration program to 
address technical risks beyond RDR (CDR) level

Cryomodule Concept

Vibration
Studies



Civil Construction and Siting
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• Compact footprint <8 km for 550 GeV 
allows for many siting options

• Evaluating both underground and surface 
sites

• Underground – less constraints on energy 
upgrade

• Surface – lower cost and faster to first physics
Surface-Site Mockup (Tunnel in White Paper)

• Rapid Excavation / Parallel Installation
• No Vertical Shafts

National Lab and 
Green Field are 

Possibilities

Fermilab Site Filler

Hanford Site



Power Consumption and Sustainability
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250 GeV CoM - Luminosity - 1.3x1034

Parameter Units Value

Reliquification Plant Cost M$/MW 18

Single Beam Power (125 
GeV linac)

MW 2

Total Beam Power MW 4

Total RF Power MW 18

Heat Load at Cryogenic 
Temperature

MW 9

Electrical Power for RF MW 40

Electrical Power For 
Cryo-Cooler

MW 60

Accelerator Complex 
Power

MW ~50

Site Power MW ~150

Temperature (K) 77

Beam Loading (%) 45

Gradient (MeV/m) 70

Flat Top Pulse Length (𝜇s) 0.7

Cryogenic Load (MW) 9

Main Linac Electrical Load 
(MW)

100

Site Power (MW) ~150

Highview Power

Compatibility with Renewables
Cryogenic Fluid Energy Storage

Intermittent and variable 
power  production from 
renewables mediated with 
commercial scale energy 
storage and power 
production



Upgrade Options
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Cryogenics Scale to multi-TeV 

● Beam power can be increased for 
additional luminosity

● C3 has a relatively low current for 250 
GeV CoM (0.19 A) - Could we push to 
match CLIC at 1.66 A? (8.5X increase?)

● Pulse length and rep. rate are also 
options

Parameter Units Baseline High-Lumi

Energy CoM GeV 250 250

Gradient MeV/m 70 70

Beam Current A 0.2 1.6

Beam Power MW 2 16

Luminosity x1034 1.3 10.4

Beam Loading 45% 87%

RF Power MW/m 30 125

Site Power MW ~150 ~180

Caution: Requires serious investigation of beam 
dynamics - great topic for C3 Demonstration R&D

Luminosity Energy
● Scalability studied to 3 TeV

● Requires rf pulse compression for reasonable site 
power 

● Higher gradient option (155 MeV/m) in consideration

arXiv:1807.10195 (2018)

HTS Pulse Compressor
REBCO Coatings

Le Sage, CERN 
Collaborators

Qo ~ 400k



RF Source R&D Over the Timescale of the Next P5
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RF source cost is the key driver for gradient and cost 

Significant savings when items procured at scale of LC

Need to focus R&D on reducing source cost to drive economic argument for high 

gradient

Understand the Impact on Advanced Collider Concept Enabled by the Goals 
Defined in the DOE GARD RF Decadal Roadmap

https://science.energy.gov/~/media/hep/pdf/Reports/DOE_HEP_GARD_RF_Research_Roadmap_Report.pdf  
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Gradient/Cost Scaling vs. RF Source Cost for Main Linac

https://science.energy.gov/~/media/hep/pdf/Reports/DOE_HEP_GARD_RF_Research_Roadmap_Report.pdf


RF Sources Available vs. Near Term Industrial Efforts
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RF sources and modulators capable of powering CCC-250 commercially available

Plan to leverage significant developments in 

performance (HEIKA) of high power rf sources – 

requires industrialization



High Efficiency Klystrons 
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Please See I. Syratchev’s Talk for Many Great Examples from Designs to Prototypes

https://indico.cern.ch/event/110154
8/contributions/4635964/attachment
s/2363439/4034986/CLIC_PM_13_
12_2021.pdf  

Real Time Progress: 
CERN/Canon - 
Similar design with 
these simulation 
tool tested this 
week (Canon 
E37113) at 10 MW 
level and X-band

https://indico.cern.ch/event/1101548/contributions/4635964/attachments/2363439/4034986/CLIC_PM_13_12_2021.pdf
https://indico.cern.ch/event/1101548/contributions/4635964/attachments/2363439/4034986/CLIC_PM_13_12_2021.pdf
https://indico.cern.ch/event/1101548/contributions/4635964/attachments/2363439/4034986/CLIC_PM_13_12_2021.pdf
https://indico.cern.ch/event/1101548/contributions/4635964/attachments/2363439/4034986/CLIC_PM_13_12_2021.pdf


Gaussian Detuning Provides Required 1st Band Dipole 
Suppression for Subsequent Bunch, Damping Also Needed
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Dipole mode wakefields immediate concern for bunch train

4𝜎 Gaussian detuning of 80 cells for dipole mode (1st band) at 𝑓𝑐=9.5 GHz, w/ ∆𝑓/𝑓𝑐=5.6%

First subsequent bunch s = 1m, full train ~75 m in length

● Damping needed to suppress re-coherence



Distributed Coupling Structures Provide Natural Path to 
Implement Detuning and Damping of Higher Order Modes  
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Individual cell feeds necessitate adoption of split-block assembly

Perturbation due to joint does not couple to accelerating mode

Exploring gaps in quadrature to damp higher order mode

Detuned Cavity Designs

Quadrant Structure



Outlook
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C3 Demonstration R&D Plan
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C3 demonstration R&D needed to advance technology beyond CDR level

Minimum requirement for Demonstration R&D Plan:

● Demonstrate operation of fully engineered and operational cryomodule

○ Simultaneous operations of min. 3 cryomodules

● Demonstrate operation during cryogenic flow equivalent to main linac at full liquid/gas flow rate

● Operation with a multi-bunch photo injector - high charges bunches to induce wakes, tunable delay witness 

bunch to measure wakes

● Demonstrate full operational gradient 120 MeV/m (and higher > 155 MeV/m) w/ single bunch 

○ Must understand margins for 120 -  targeting power for  (155 + margin) 170 MeV/m

○ 18X 50 MW C-band sources - off the shelf units

● Fully damped-detuned accelerating structure
● Work with industry to develop C-band source unit optimized for installation with main linac

This demonstration directly benefits development of compact FELs, beam dynamics, high brightness guns, etc.
The other elements needed for a linear collider - the sources, damping rings, and beam delivery system – more 

advanced from the ILC and CLIC – need C3 specific design

● Our current baseline uses these directly; will look for further cost-optimizations for of C3



C3 Demonstration R&D Plan timeline
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High Energy Physics: Caterina Vernieri caterina@slac.stanford.edu  
Accelerator Science & Engineering: Emilio Nanni nanni@slac.stanford.edu   

C3  R&D, System Design and 

Project Planning are ongoing

● Early career scientists 

should help drive the agenda 

for an experiment they will 

build/use

● Many opportunities for 

other institutes to 

collaborate on:

○ beam dynamics, 

vibrations and 

alignment, cryogenics, 

rf engineering, controls, 

detector optimization, 

background studies, 

etc.

mailto:caterina@slac.stanford.edu
mailto:nanni@slac.stanford.edu


The Complete C3 Demonstrator
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Demonstrate fully engineered cryomodule

~50 m scale facility

3 GeV energy reach

Answer technical questions needed for CDR



Conclusion

22Snowmass

C3 can provide a rapid route to precision Higgs physics with a compact 8 km 

footprint

● Higgs physics run by 2040

● Possibly, a US-hosted facility

C3  time structure is compatible with SiD-like detector overall design and ongoing 

optimizations.

C3 can be quickly be  upgraded to 550 GeV 

C3 can be extended to a 3 TeV e+e- collider with capabilities similar to CLIC

Possible to do physics at an intermediate stage in the construction at 91 GeV

● We do not consider this a part of our baseline, but we mention the possibility in 

case there is community interest for a Giga-Z (2 yrs) program

Next workshop proposed dates Oct. 13-14th 2022
More Details Here (Follow, Endorse, Collaborate): 

https://indico.slac.stanford.edu/event/7155/   

2nd C3 Workshop 
https://indico.fnal.gov/event/54189/    

1st C3 Workshop
https://indico.slac.stanford.edu/event/7016/     

https://indico.slac.stanford.edu/event/7155/
https://indico.fnal.gov/event/54189/
https://indico.slac.stanford.edu/event/7016/


Questions?
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