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CFO03: Cosmic Probes of Dark Matter

Cosmological and astrophysical measurements provide the only robust, positive
empirical measurements of dark matter.

Cosmic probes are unique in that they do not rely on the assumption that dark matter
has interactions with normal matter beyond gravity; thus they are the most “expansive”
(and could be the only viable) approach to the dark matter problem.

Cosmic probes require strong synergy among particle theorists, dynamists, simulators,
observers, and experimentalists; need a new mechanism to support these emerging,
collaborative efforts.

Cosmic probes are highly relevant and complementary to search efforts in CF1, CF2,
CF7 and other frontiers, and there is strong experimental synergy with cosmological
probes of dark matter, dark energy, and inflation (CF4, CF5, CF6).



Halo Measurements
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Extreme Environments




Three Core HEP Community Priorities

e Current /near-future HEP cosmology experiments have direct sensitivity to dark matter particle physics
[1-3]. Cosmological studies of dark matter should be supported as a key component of
the HEP Cosmic Frontier program due to their unique ability to probe dark matter
microphysics and link the results of terrestrial dark matter experiments to cosmological
measurements.

The construction of future cosmology experiments is critical for expanding our under-
standing of dark matter physics. Proposed facilities across the electromagnetic spectrum, as well
as gravitational waves, can provide sensitivity to dark matter physics, as well as physics of dark energy
and the early universe [4]. HEP involvement will be essential in constructing and operating these
facilities, and optimizing their sensitivity to dark matter physics should be a core consideration in
their design.

Cosmic probes provide robust sensitivity to the microphysical properties of dark matter due to enor-
mous progress in theoretical modeling, numerical simulations, and astrophysical data. Theory, simu-
lation, observation, and experiment must be supported together to maximize the efficacy
of cosmic probes of dark matter physics.




Five Major Science Opportunities

1. The Standard Model of particle physics and cosmology can be tested at unprecedented levels of precision
by measuring the cosmic distribution of dark matter. These measurements span an enormous range of
scales from the observable universe to sub-stellar-mass systems (e.g., the matter power spectrum, the
mass spectrum of dark matter halos, dark matter halo density profiles, and abundances of compact
objects) [7, 12, 13]. The fundamental particle properties of dark matter (e.g., particle mass, production
mechanism, and interaction cross sections) can lead to observable changes in the distribution of dark
matter. Measurements of the distribution of dark matter should be supported as a key
element of the HEP Cosmic Frontier program to understand the fundamental nature of
dark matter.

. The ACDM model makes the strong, testable prediction that the mass spectrum of dark matter
halos extends below the threshold at which galaxies form [5]. Sub-galactic dark matter halos are
less influenced by baryonic processes making them especially clean probes of fundamental physics of
dark matter. We are on the cusp of detecting dark matter halos that are devoid of baryons through
several cosmic probes (e.g., strong lensing, the dynamics of stars around the Milky Way). The HEP
community should pursue the detection of dark matter halos below the threshold of galaxy
formation as an exceptional test of fundamental dark matter properties.




Five Major Science Opportunities

3. Extreme astrophysical environments provide unique opportunities to explore dark matter couplings to
the Standard Model that are inaccessible with terrestrial experiments [8]. Instruments, observa-
tions, and theorists that study extreme astrophysical environments should be supported
as an essential means to constrain the expanding landscape of dark matter models.

4. Numerical simulations of structure formation and baryonic physics play a key role in addressing particle
physics questions about the nature of dark matter. HEP computational resources and expertise
can be combined with astrophysical simulation expertise to rapidly advance numerical
simulations of dark matter physics.

. The interdisciplinary nature of dark matter research calls for interagency mechanisms
that support a comprehensive pursuit of scientific opportunities cutting across traditional
disciplinary boundaries.
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Dedicated White Paper on DM searches with Extreme Environments
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Observations of extreme astro objects across the EM spectrum + GWs can be sensitive to
the full DM mass range, over 50 orders of magnitude!



https://arxiv.org/abs/2203.07984

Complementarity with CF1 and EF
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Complementarity with CF2

Haloscopes
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Complementarity with Neutrino Frontier
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Dark Matter Halos
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Roadmap to New Physics
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Goal: demonstrate that astrophysical uncertainties can be controlled in order to
extract microphysical properties of dark matter.



Outlook

Whenever a new model of dark matter is proposed, we need to ask the question: “Is this
consistent with our observations of the Universe?”. In this way, CF3 is complementary to all
searches for dark matter

TF: Predictions on small-scale structure of the Universe; many light dark matter models may
have large self-interacting cross sections and suppressed/enhanced matter power spectra,
leading to novel signals in cosmic and astrophysical observations

CompF: To make concrete predictions and disentangle from baryon physics, we need
numerical simulations of structure formation, and Al/ML for data analysis

IF: Instrumentation, detectors for future cosmic surveys

We are entering the era of precision astrophysical measurements of dark matter!



