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The “Curse” of Dimensionality

At neutrino experiments (e.g., uBooNE)
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Dimensional Reduction

(Image from Daniel Whiteson’s talk in Seattle Snowmass Summer Meeting)
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Kinematic Variables and Challenges

Invisible

Which axis (or variable) in the visible space is The existence of invisible particles (e.g.,

best sensitive to the signal of interest? neutrinos, dark matter candidates)
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Discovery and Precision Measurement
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= Expedite the discovery of new particles,

= Help interpreting physics data,
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= Allow for particle property measurements (e.g., mass, spin, coupling)
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Kinematic Variables and Feature Engineering

Kinematic Variables and Feature Engineering for Particle Phenomenology

Roberto Franceschini.'** Doojin Kim,>! Kyoungchul Kong.*:? Konstantin
T. Matchev,* ¥ Myeonghun Park,>® ¥ and Prasanth Shyamsundar” **

! Universita degli Studi Roma Tre and INFN Roma Tre,
Via della Vasca Navale 84, 1-00146 Roma, Italy
2 Mitchell Institute for Fundamental Physics and Astronomy,
Department of Physics and Astronomy. Teras A&M Universily. College Station, TX 77843, USA
3 Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
Y Institute for Fundamental Theory, Physics Department,
University of Florida, Gainesville, FL 32611, USA
% Faculty of Natural Sciences, Seoultech, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Korea
©School of Physics, KIAS, Seoul 02455, Korea
7 Fermilab Quantum Institute, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

Kinematic variables have been playing an important role in collider phenomenology, as they expe-
dite discoveries of new particles by separating signal events from unwanted background events and
allow for measurements of particle properties such as masses, couplings, spins, etc. For the past 10
years, an enormous number of kinematic variables have been designed and proposed, primarily for
the experiments at the Large Hadron Collider, allowing for a drastic reduction of high-dimensional
experimental data to lower-dimensional observables, from which one can readily extract underlying
features of phase space and develop better-optimized data-analysis strategies. We review these re-
cent developments in the area of phase space kinematics, summarizing the new kinematic variables
with important phenomenological implications and physics applications. We also review recently
proposed analysis methods and techniques specifically designed to leverage the new kinematic vari-
ables. As machine learning is nowadays percolating through many fields of particle physics including
collider phenomenology, we discuss the interconnection and mutual complementarity of kinematic
variables and machine learning techniques. We finally discuss how the utilization of kinematic vari-
ables originally developed for colliders can be extended to other high-energy physics experiments
including neutrino experiments.

[Franceschini, DK, Kong, Matchev, Park, Shyamsundar, arXiv:2206.13431]

Any feedback will be more than welcome.
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Flow of Dimensionality Reduction and Kinematic Variables

Dimensionality per event
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Inclusive (Shape) Variables

T
Observable Definition
.. =3 > >
Sphericity s 2 (A2 + '\3)’ Ai(A Az = As),
eigenvalues of Mz_, = Z—i?% with i,5 € {z,y, 2}
a=1
Transverse sphericity St = -Ali_),‘_z,‘;
Aplanarity A = 323
Planarity = A2 — A3
(Transverse) spherocity So = % mln (2“ IZ;::"I
|Pa-72|
Thrust T =max (—Z“GIT)
Thrust major Tmajor = _ max 2 |Pa mal
_fimaLlaT a |Pal
Thrust minor Tininor = Z“ZI’; ‘Tﬁ."‘l’“l with fimi = 27 X foma

Oblateness

O = Tmajor — Tminor

Normalized hemisphere mass

Heavy jet mass
Light jet mass
Jet mass difference
Jet broadening

Wide/narrow, total broadening

M2,y = (ZaeHl(z) pa)z with H;(2) being
hemispheres divided by the plane normal to nr
M7 = max (M7, M3)

M7 = min (M7, M3)
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Fox-Wolfram moments
N-jettiness
N-subjettiness

Energy-energy correlation

Z"J p’—”pLP (COSO;J)
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[Inspired by Fabio Maltoni’s lecture slide at the 2013 CERN - Latin-American School of High Energy Physics]
e
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Topology disambiguation with invariant masses
[Cho, DK, Matcheyv, Park, arXiv:1206.1546]
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M, kink [Cho, Choi, Kim
Park, arXiv:0709.0288]
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Algebraic singularity [I.-
W. Kim, arXiv:0910.1149]

Invisible Momentum
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Transverse mass distribution of leptonic W [CDF
Collaboration, Science 376 (2022) 6589]

Theoretical/phenomenological

developments mostly motivated by

missing energy events
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Exclusive Variables: Energy, Time, Distance
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Top quark mass measurement using the energy- Long-lived particle searches with timing
peak method [CMS Collaboration, CMS-PAS-TOP-15-002] information [Liu, Lui, Wang, arXiv:1805.05957]

= Re-discovering the implication of the energy peak at hardon colliders

= Long-lived particle searches with timing and distance variables
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Other Exclusive Variables
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Kink structure in the transverse variable of single resonance
events with ISR [Barr, Gripaios Lester, arXiv:0711.4008]

= |SR (sometimes) helps both the discovery of
new phenomena and particle mass

measurements.
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Dark matter search in the mono-X + MET channels [C\S
Collaboration, arXiv:2107.13021]
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Particle mass measurement with the focus point method

n
Dependence of # of undetermined parameters [DK, Matchev, Shyamsundar, arXiv:1906.02821]

N, — Ny, in # of intermediate resonances n

[Burns, Kong, Matchev, Park, arXiv:0810.5576] 0000 Y
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of Kinematic edge detection [Debnath, Gainer, DK,

Matchev, arXiv:1506.04141]
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Kinematic Variables (KVs) in the Machine Learning (ML) Era

Low-Level Inputs — Kinematic Variables — Physics Task (@)

Low-Level Inputs — Machines — Physics Task (»)

Kinematic Variables

Low-Level Inputs

T » Machines — Physics Task

—_
)
~—

Low-Level . Deep Learned
Inputs B Kinematic Variables

— Physics ()

Task

“Blackboxness” of ML-based techniques and kinematic variables

-

Traditional approach only with KVs

ML-based approaches with/without the
aid of KVs

Construction of artificial KVs

» Tointerpret/explain the ML blackbox = KVs for interpreting, explaining, and understanding the decisions made

by ML [Chang, Cohen, Ostdiek, arXiv:1709.10106; Faucett, Thaler, Whiteson, arXiv:2010.11998; Agarwal et al, arXiv:2011.13466;

Grojean, Paul, Qian, arXiv: 2011.13945]

» To try the machine less of a blackbox = Constructing KV-inspired neural architectures [Komiske, Metodiev, Thaler,

arXiv:1810.05165; Erdmann, Geiser, Rath, Rieger, arXiv:1812.09722]

» To design robust ML-based analysis techniques despite blackboxness = Constructing ML-based event variables

[DK, Kong, Matchev, Park, Shaymsundar, arXiv:2105.10126]
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Kinematic Variables at Non-Collider Experiments
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E,0%[GeV rad? volume neutrino detectors [DK, Park, Shin,

arXiv:1612.06867]
Elastic low-mass dark matter signal separation
from CCQE-induced backgrounds at DUNE [de
Romeri, Kelly, Machado, arXiv:1903.10505]

Kinematic variables designed for collider phenomenology can be readily applied to non-collider experiments (e.g.,

neutrino experiments)

= Experiment-wise = high-capability detectors
* Theory-wise = Models predicting multi-particle states (e.g., non-minimal dark-sector scenarios)
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Conclusions

@ Kinematic variables have been playing an important role in collider phenomenology, as they expe-
dite discoveries of new particles by separating signal events from unwanted background events and
allow for measurements of particle properties such as masses, couplings, spins, et@)For the past 10

years, an enormous number of kinematic variables have been designed and proposed, primarily for
the experiments at the Large Hadron Collider, allowing for a drastic reduction of high-dimensional
experimental data to lower-dimensional observables, from which one can readily extract underlying
features of phase space and develop better-optimized data-analysis strategie@We review these re-
cent developments in the area of phase space kinematics, summarizing the new kinematic variables
with important phenomenological implications and physics applications. We also review recently
proposed analysis methods and techniques specifically designed to leverage the new kinematic vari-
ables. As machine learning is nowadays percolating through many fields of particle physics including
collider phenomenolog®) we discuss the interconnection and mutual complementarity of kinematic
variables and machine learning techniques@’Ve finally discuss how the utilization of kinematic vari-

ables originally developed for colliders can be extended to other high-energy physics experiments
including neutrino experiments.
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Discussion

Future directions of kinematic variables
1) Applicability of kinematic variables for the non-
collider experiments, especially fixed target
experiments and neutrino experiments
2) Investigation of interpretability and reliability of ML-

based techniques using kinematic variables
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