

Event Generation for the LHC

Joshua Isaacson

Based on: Snowmass White Paper (arxiv:2203.11110)

Seattle Snowmass Summer Meeting 2022: EF-TF Cross Frontier

19 July 2022

Introduction

- The success of HEP experiments critically relies on advancements in physics modelling and computational techniques, driven by a close dialogue between large experimental collaborations and small teams of event generator authors.
- Development, validation, and long-term support of event generators requires a vibrant research program at the interface of theory, experiment, and computing

Introduction

Introduction

 White paper brought together all event generator communities in HEP for the first time

- Need to continue this collaboration through the creation of a joint theoretical-experimental working group cross-cutting through all experiments
- For a discussion on the computing aspects see my talk in the CompF2 parallel from Monday.
- For a discussion on the impact of ML on event generation see the talk from Tilman following this one and the ML WP (2203.07460).

2 / 14

Why do we need generators?

- Precision understanding of Standard Model
- Ability to model BSM processes
- Essential role in planning and design of future experiments
- Connects the theory and experimental community
- Modelling non-perturbative effects

Introduction

Computing Bottlenecks

- Unweighting efficiency
- Handling (reducing) negative weights
- Alternative event weights for parton showers to estimate uncertainties
- Matching / merging schemes have factorial growth problem

Fixed Order Calculations

- Automation has been achieved for tree level and next-to-leading order calculations
- Large development in fully-differential NNLO calculations
- A few processes at N³LO accuracy

Higgs	SM candles	Jets	Other
H	W^{\pm}	dijets	single top
$W^{\pm}H$	Z	3 jets	$t ar{t}$
ZH	$\gamma\gamma$	$W^{\pm}+{\sf jet}$	$bar{b}$
H (VBF)	$W^{\pm}\gamma$	Z+jet	$H o bar{b}$
HH	$Z\gamma$	$\gamma+$ jet	t decay
HHH	W^+W^-	Z + b	$\mathrm{e^+e^-} \rightarrow 3j$
H+jet	WZ	$W^{\pm}c$	DIS (di-)jets
$W^{\pm}H+$ jet	ZZ	$\gamma\gamma+{\sf jet}$, , , , ,
ZH+jet	$\gamma\gamma\gamma$		

Calculations available differentially at NNLO or higher in QCD (for pp initial state). References to the first time the process has been calculated can be found in Table 1 of the white paper.

QCD factorization and parton evolution

• Factorize into short and long distance physics:

$$\sigma[J] \approx \sum_{a,b} \int dx_a \int dx_b f_{a/A}(x_a, \mu_J^2) f_{b/B}(x_b, \mu_J^2) \hat{\sigma}[J]$$

QCD evolution given by:

$$\frac{\mathrm{d}\,x f_{a/A}(x,\mu_J^2)}{\mathrm{d}\ln\mu_J^2} = \sum_{b=q,g} \int_0^1 \mathrm{d}\tau \int_0^1 \mathrm{d}z \,\frac{\alpha_s}{2\pi} \big[z P_{ab}(z)\big]_+ \,\tau f_{b/A}(\tau,\mu_J^2) \,\delta(x-\tau z)$$

- PDFs and fragmentation functions are not always consistent
- Improving PDF understanding for neutrino experiments and the EIC are vital
- Work on using lattice to improve PDF accuracy

6 / 14

QCD factorization and parton evolution

• Factorize into short and long distance physics:

$$\sigma[J] \approx \sum_{a,b} \int dx_a \int dx_b f_{a/A}(x_a, \mu_J^2) f_{b/B}(x_b, \mu_J^2) \hat{\sigma}[J]$$

QCD evolution given by:

$$\frac{\mathrm{d} \, x f_{a/A}(x,\mu_J^2)}{\mathrm{d} \, \ln \mu_J^2} = \sum_{b=q,g} \int_0^1 \mathrm{d} \tau \int_0^1 \mathrm{d} z \, \frac{\alpha_s}{2\pi} \big[z P_{ab}(z) \big]_+ \, \tau f_{b/A}(\tau,\mu_J^2) \, \delta(x-\tau z)$$

- PDFs and fragmentation functions are not always consistent
- Improving PDF understanding for neutrino experiments and the EIC are vital
- Work on using lattice to improve PDF accuracy

6 / 14

Introduction Cross-Cutting

Hadronization

Lund String Model

- Basic assumption: linear confinement potential approximated by a string stretched between $q\bar{q}$ pairs
- Stored energy in string used to produce new $q\bar{q}$ pairs
- Barvons introduced by splitting to a antidiquark-diquark pair
- Gluons treated as kinks on the string
- Many improvements over the years. but still much work is needed

Cluster Model

- Guided by local parton-hadron duality and preconfinement
- Evolution based on formation and decay of color-neutral clusters interpreted as resonances of hadrons with a continuous mass spectrum
- Baryons introduced by introduction of diauarks
- Gluons are split into flavor-antiflavor pairs at end of parton shower
- Need to revisit questions of very forward hadronization and color reconnections

New-physics models

Generator	Representation							
	singlet	triplet	octet	ϵ^{ijk}	6	10		
MG5aMC	√	√	√	√	√			
SHERPA	✓	✓	✓					
WHIZARD	√	√	√					

Generator	Representations			Lorentz structures		Other aspects				
	SM	Spin $\frac{3}{2}$	Spin 2	Custom	Majorana	4-Fermi	Propagator	Running	Form factor	Unitarity
MG5aMC	√	✓	√	✓	✓	(√)	✓	EFT	√	
SHERPA	✓		(✓)	✓	✓	(√)				
WHIZARD	✓	✓	1	✓	✓	V	✓		✓	✓

- FeynRules package allows for the generation of Feynman rules from nearly arbitrary Lagrangians
- UFO file format very successful

LHC Introduction

Higher-order QCD and EW computations

- MADLOOP: One loop automated, work on two-loops
- MATRIX: NNLO accuracy through q_T subtraction, mixed NNLO QCD-EW corrections
- MCFM: NNLO accuracy, recently added resummation using CuTe, interface to general purpose generators
- NNLOJet: NNLO accuracy, using antenna subtraction, work towards N³LO
- OPENLOOPS: Automated generator of tree and one-loop amplitudes, stability techniques for one-loop contributions in unresolved regions of phase space for NNLO calculations.
- RECOLA: Automated generator of tree and one-loop amplitudes for full SM and BSM.

[2107.04472]

LHC

QCD parton and dipole showers

[2002.11114]

- Many tools exist for parton showers, but are limited in accuracy
- Ongoing work to evaluate formal precision of parton showers
- First NLL shower completed
- Several proposals to include sub-leading color effects into parton showers
- Ongoing work on including higher order / higher logarithmic corrections
- Major questions on how you handle mass effects in a shower

Introduction Cross-Cutting LHC Conclusions

Matching fixed-order to parton showers

- NLO Matching:
 - MC@NLO: Standard for general purpose generators
 - POWHEG: Combines matrix-element corrected parton showers
 - KRKNLO: Crucial advantage is its simplicity

- (N)LO multijet merging:
 - Combines strengths of matrix element calculations and parton showers
 - Soft and collinear radiation captured by shower
 - Hard radiation captured by higher multiplicity matrix element
 - VINCIA uses sector showers which reduce complexity of matching, merging, and matrix-element correction schemes

LHC

Matching fixed-order to parton showers

- NNLO Matching
 - GENEVA: Use SCET to match fixed order to parton shower
 - NNLOPS and Minnlops: No reweighting required, and parton shower based on POWHEGmethod
 - Need work in direction of fully differential matching
- TOMTE method for N³LO matching, process independent, and constructed with a simple procedure

LHC

Matching fixed-order to parton showers

- NNLO Matching
 - GENEVA: Use SCET to match fixed order to parton shower
 - NNLOPS and Minnlops: No reweighting required, and parton shower based on POWHEGmethod
 - Need work in direction of fully differential matching
- TOMTE method for N³LO matching, process independent, and constructed with a simple procedure

General-purpose resummation tools

- CAESAR Formalism: provides NLL'+NLO accuracy, plugin available to interface with SHERPA
- Possible extensions to NNLL accuracy via the ARES formalism.
- SHERPA has framework for a q_T resummation for W and Z at ${\sf N}^3{\sf LL}'$ accuracy based on SCET

Conclusions

Conclusions

- Event Generators are vital for the success of high energy experiments
- Event Generators bridge theory, experiment, and computing