Event Generation for the LHC
Joshua Isaacson
Based on: Snowmass White Paper (arxiv:2203.11110)
Seattle Snowmass Summer Meeting 2022: EF-TF Cross Frontier
19 July 2022
The success of HEP experiments critically relies on advancements in physics modelling and computational techniques, driven by a close dialogue between large experimental collaborations and small teams of event generator authors.

Development, validation, and long-term support of event generators requires a vibrant research program at the interface of theory, experiment, and computing.
Introduction

- White paper brought together all event generator communities in HEP for the first time.
- Need to continue this collaboration through the creation of a joint theoretical-experimental working group cross-cutting through all experiments.
- For a discussion on the computing aspects see my talk in the CompF2 parallel from Monday.
- For a discussion on the impact of ML on event generation see the talk from Tilman following this one and the ML WP (2203.07460).
Why do we need generators?

- Precision understanding of Standard Model
- Ability to model BSM processes
- Essential role in planning and design of future experiments
- Connects the theory and experimental community
- Modelling non-perturbative effects
Computing Bottlenecks

- Unweighting efficiency
- Handling (reducing) negative weights
- Alternative event weights for parton showers to estimate uncertainties
- Matching / merging schemes have factorial growth problem
Fixed Order Calculations

- Automation has been achieved for tree level and next-to-leading order calculations
- Large development in fully-differential NNLO calculations
- A few processes at \(N^3 \)LO accuracy

<table>
<thead>
<tr>
<th>Higgs</th>
<th>SM candles</th>
<th>Jets</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>(W^\pm)</td>
<td>dijets</td>
<td>single top</td>
</tr>
<tr>
<td>(W^\pm H)</td>
<td>(Z)</td>
<td>3 jets</td>
<td>(t \bar{t})</td>
</tr>
<tr>
<td>(ZH)</td>
<td>(\gamma \gamma)</td>
<td>(Z + \text{jet})</td>
<td>(b \bar{b})</td>
</tr>
<tr>
<td>(H \text{ (VBF)})</td>
<td>(W^\pm \gamma)</td>
<td>(\gamma + \text{jet})</td>
<td>(H \rightarrow b \bar{b})</td>
</tr>
<tr>
<td>(HH)</td>
<td>(Z \gamma)</td>
<td>(Z + b)</td>
<td>(t \text{ decay})</td>
</tr>
<tr>
<td>(HHH)</td>
<td>(W + W^-)</td>
<td>(W^\pm c)</td>
<td>(e^+e^- \rightarrow 3j)</td>
</tr>
<tr>
<td>(H + \text{jet})</td>
<td>(WZ)</td>
<td>(\gamma \gamma + \text{jet})</td>
<td>DIS (di-)jets</td>
</tr>
<tr>
<td>(W^\pm H + \text{jet})</td>
<td>(ZZ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ZH + \text{jet})</td>
<td>(\gamma \gamma)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculations available differentially at NNLO or higher in QCD (for \(pp \) initial state). References to the first time the process has been calculated can be found in Table 1 of the white paper.
QCD factorization and parton evolution

- Factorize into short and long distance physics:

\[\sigma[J] \approx \sum_{a,b} \int dx_a \int dx_b \ f_{a/A}(x_a, \mu_J^2) \ f_{b/B}(x_b, \mu_J^2) \ \hat{\sigma}[J] \]

- QCD evolution given by:

\[
\frac{d x f_{a/A}(x, \mu_J^2)}{d \ln \mu_J^2} = \sum_{b=q,g} \int_0^1 \ d\tau \int_0^1 \ dz \ \frac{\alpha_s}{2\pi} [z P_{ab}(z)] + \tau f_{b/A}(\tau, \mu_J^2) \delta(x - \tau z)
\]

- PDFs and fragmentation functions are not always consistent

- Improving PDF understanding for neutrino experiments and the EIC are vital

- Work on using lattice to improve PDF accuracy
QCD factorization and parton evolution

- Factorize into short and long distance physics:
 \[
 \sigma[J] \approx \sum_{a,b} \int dx_a \int dx_b \ f_{a/A}(x_a, \mu_J^2) f_{b/B}(x_b, \mu_J^2) \ \hat{\sigma}[J]
 \]

- QCD evolution given by:
 \[
 \frac{dx f_{a/A}(x, \mu_J^2)}{d \ln \mu_J^2} = \sum_{b=q,g} \int_0^1 d\tau \int_0^1 dz \ \frac{\alpha_s}{2\pi} [zP_{ab}(z)] + \tau f_{b/A}(\tau, \mu_J^2) \delta(x - \tau z)
 \]

PDFs and fragmentation functions are not always consistent

Improving PDF understanding for neutrino experiments and the EIC are vital

Work on using lattice to improve PDF accuracy
Hadronization

Lund String Model
- Basic assumption: linear confinement potential approximated by a string stretched between $q\bar{q}$ pairs
- Stored energy in string used to produce new $q\bar{q}$ pairs
- Baryons introduced by splitting to an antidiquark-diquark pair
- Gluons treated as kinks on the string
- Many improvements over the years, but still much work is needed

Cluster Model
- Guided by local parton-hadron duality and preconfinement
- Evolution based on formation and decay of color-neutral clusters interpreted as resonances of hadrons with a continuous mass spectrum
- Baryons introduced by introduction of diquarks
- Gluons are split into flavor-antiflavor pairs at end of parton shower
- Need to revisit questions of very forward hadronization and color reconnections
New-physics models

<table>
<thead>
<tr>
<th>Generator</th>
<th>singlet</th>
<th>triplet</th>
<th>octet</th>
<th>(\epsilon^{ijk})</th>
<th>6</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG5aMC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SHERPA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>WHIZARD</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generator</th>
<th>Representations</th>
<th>Lorentz structures</th>
<th>Other aspects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SM</td>
<td>Spin 3/2</td>
<td>Spin 2</td>
</tr>
<tr>
<td>MG5aMC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SHERPA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>WHIZARD</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- FeynRules package allows for the generation of Feynman rules from nearly arbitrary Lagrangians
- UFO file format very successful
Higher-order QCD and EW computations

- MADLOOP: One loop automated, work on two-loops
- MATRIX: NNLO accuracy through q_T subtraction, mixed NNLO QCD-EW corrections
- MCFM: NNLO accuracy, recently added resummation using CuTe, interface to general purpose generators
- NNLOJet: NNLO accuracy, using antenna subtraction, work towards N^3LO
- OPENLOOPS: Automated generator of tree and one-loop amplitudes, stability techniques for one-loop contributions in unresolved regions of phase space for NNLO calculations.
- RECOLA: Automated generator of tree and one-loop amplitudes for full SM and BSM.
QCD parton and dipole showers

- Many tools exist for parton showers, but are limited in accuracy
- Ongoing work to evaluate formal precision of parton showers
- First NLL shower completed
- Several proposals to include sub-leading color effects into parton showers
- Ongoing work on including higher order / higher logarithmic corrections
- Major questions on how you handle mass effects in a shower

\[\Delta \psi_{12}, \alpha_s \rightarrow 0 \]

\[\frac{\Delta \psi_{12}}{\Sigma_{MC}^{\text{Next-to-Next-to-Leading Order}}(\Delta \psi_{12}, k_1, k_2)} \]

- $-0.6 < \alpha_s \log \frac{k_{11}}{Q} < -0.5$, $0.3 < \frac{k_{22}}{k_{11}} < 0.5$

[2002.11114]
Matching fixed-order to parton showers

- **NLO Matching:**
 - MC@NLO: Standard for general purpose generators
 - POWHEG: Combines matrix-element corrected parton showers
 - KRKNLO: Crucial advantage is its simplicity

- **(N)LO multijet merging:**
 - Combines strengths of matrix element calculations and parton showers
 - Soft and collinear radiation captured by shower
 - Hard radiation captured by higher multiplicity matrix element
 - VINCIA uses sector showers which reduce complexity of matching, merging, and matrix-element correction schemes
Matching fixed-order to parton showers

- **NNLO Matching**
 - **GENEVA**: Use SCET to match fixed order to parton shower
 - **NNLOPS and MiNNLO_PS**: No reweighting required, and parton shower based on POWHEG method
 - Need work in direction of fully differential matching

- **TOMTE method for N3LO matching**, process independent, and constructed with a simple procedure
Matching fixed-order to parton showers

- **NNLO Matching**
 - **GENEVA**: Use SCET to match fixed order to parton shower
 - **NNLOPS and MiNNLO\(_{PS}\)**: No reweighting required, and parton shower based on POWHEG method
 - Need work in direction of fully differential matching

- **TOMTE method for N\(^3\)LO matching**, process independent, and constructed with a simple procedure

![Graph showing transverse momentum of Z-boson with ratio and data points](image)
General-purpose resummation tools

- **CAESAR Formalism**: provides NLL’+NLO accuracy, plugin available to interface with SHERPA
- Possible extensions to NNLL accuracy via the ARES formalism.
- **SHERPA** has framework for a \(q_T \) resummation for \(W \) and \(Z \) at N^3LL’ accuracy based on SCET
Event Generators are vital for the success of high energy experiments

Event Generators bridge theory, experiment, and computing