Dark Matter from Neutrino Frontier

Yun-Tse Tsai (SLAC)
Snowmass Meeting
July 19th 2022
DM at Neutrino Frontier

- Indirect search via spectra of neutrino fluxes, typically from natural sources

- Constraints of DM via supernova neutrino measurements

- DM-induced neutrinos

- Direct search for boosted dark matter (BDM) from natural sources (arXiv: 2207.02882)

- Direct search for sub-GeV dark matter (light dark matter or LDM) from artificial sources (arXiv: 2207.06898)
Cold DM captured by DM concentrated region, such as the Sun or Galaxy Center

Lighter, boosted DM, e, ν, etc. produced via annihilation or decay

Detected by massive, (underground) ν detectors
Artificial Source

• Neutrino beam = high intensity proton beam + fixed target
• Short baseline (or near detector) ν detectors
 • design to detect a lot of weakly interacting particles
 • usu. capable of tracking, particle ID, calorimetry
• Reactor neutrino source
Dark Sector Landscape

<table>
<thead>
<tr>
<th>Model</th>
<th>Production</th>
<th>Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higgs Portal</td>
<td>K, B decay</td>
<td>Decay ($\ell^+\ell^-$)</td>
</tr>
<tr>
<td>Vector Portal</td>
<td>π^0, η Decay</td>
<td>Scattering ($\chi e^-, \chi X$, Dark Tridents)</td>
</tr>
<tr>
<td></td>
<td>Proton Bremsstrahlung</td>
<td>Decay ($\ell^+\ell^-, \pi^+\pi^-$)</td>
</tr>
<tr>
<td></td>
<td>Drell-Yan</td>
<td>Inelastic Decay ($\chi \rightarrow \chi' \ell^+\ell^-$)</td>
</tr>
<tr>
<td>Neutrino Portal</td>
<td>$\pi, K, D_{(s)}, B$ decay</td>
<td>Decay (many final states)</td>
</tr>
<tr>
<td>ALP Portal</td>
<td>Meson Decay</td>
<td>Decay ($\gamma\gamma$)</td>
</tr>
<tr>
<td>(γ-coupling dominant)</td>
<td>Photon Fusion</td>
<td>Inverse Primakoff process</td>
</tr>
<tr>
<td></td>
<td>Primakoff Process</td>
<td></td>
</tr>
<tr>
<td>Dark Neutrinos</td>
<td>SM Neutrino</td>
<td>Upscattering + Decay ($\nu \rightarrow \nu D, \nu D \rightarrow \nu \ell^+\ell^-$)</td>
</tr>
<tr>
<td>Dipole Portal</td>
<td>Dalitz Decay</td>
<td>Decay ($\nu D \rightarrow \nu \gamma$)</td>
</tr>
<tr>
<td>νphilic Mediators</td>
<td>SM Neutrino</td>
<td>Scattering (Missing p_T, SM Tridents)</td>
</tr>
</tbody>
</table>

Table 1: A selection of models that can be probed by neutrino beam experiments.
Detection: Interaction

- **DM-electron** scattering: e signature
- **DM-nucleon** scattering: typically neutral current-like
 - Nuclear effects smear the topology
 - Challenging on reducing and precisely constraining neutrino background
Detection: Decay Products

Exotic particle travels along the neutrino beam line and decay in flight or at rest

N

Effectively event rate production \times decay rate.
Example: heavy neutral lepton (N) decays into $\mu\pi$

Detector

A decay channel
Examples
Elastic BDM

- Hadronic scattering
- Point back to the BDM origin, the Sun
- Take advantage of the low proton threshold in DUNE

\[\text{Phys. Rev. D 103, 095012} \]
Inelastic BDM

- Distinctive signature of 3 leptons and displaced vertex
- Utilize the tracking capability of DUNE

Phys. Rev. Lett. 119, 161801
Complementarity and Desired Capabilities
Neutrino Measurement

• Look for deviation
 • Require precise measurements

• Indirect DM search
 • Require complementary experiments to pin down the interpretations

• Broad energy range of natural neutrino sources

• Desire to cover as wide as possible

• Experiments based on different technologies complement each other
 • Neutrino energy and flavors
DM Particle Detection

- Massive, underground neutrino detectors:
 - MeV detection threshold
 - Kiloton scale
 - Sensitive to boosted DM (with small fluxes)
 - Complementary to direct DM particle detectors
- Similar to measurements of neutrinos, desire broad energy ranges for particle detection and massive detector
- Challenging to distinguish the DM signature from neutrinos
- For distinctive signatures, require specific detector specs
Sub-GeV DM Search

- **Hadron** production and interaction from fixed target-proton beams less precise than electron beams
- More sensitive to **leptophobic** models
- **Complementary** to experiments based on electron beams
- Energy range (sub-GeV - a few GeV) complementary to collider experiments
- Different detector components desired; e.g. dense target for interactions, sparse target for decays
- **Neutrino background** elimination is challenging
Summary & Outlook

• Neutrino experiments offer facilities for a wide range of DM search

• Complementarity among neutrino detectors based on different technologies, and other experiments

• Studies on landscape of exiting results, complementarity and guidelines on theoretical/experimental priorities desired

• Important to eliminate or constrain neutrino background
Backup
Natural Source

- Dark-matter-induced neutrinos
- Boosted dark matter
- Explosive slow-moving dark matter
- etc.
Boosted Dark Matter

1. Cold dark matter captured by dark matter concentrated region, such as the Sun or Galaxy Center

2. Produce lighter, boosted dark matter via annihilation or decay

3. Boosted dark matter interact with electrons or nucleons in detectors

4. Look for scattered electrons or recoil protons
Inelastic Boosted DM

5. Look for correlation between displaced activities
Production

Accelerator neutrino beam or fixed target facility produce charged mesons, such as kaons, pions

The meson decays into a charged lepton and a HNL via a mixing angle, $\Theta_{e4, \mu4, \tau4}$, between the SM neutrino and the HNL

No helicity suppression
HNL Detection

HNL travels along the neutrino beam line and decay in flight

Detect the decay products in the detector. Effectively event rate production \times decay rate. Measure the mixing angle $\Theta_{\mu^4, \epsilon^4, \tau^4}$ with each M_N.