Dark Matter from Neutrino Frontier

Yun-Tse Tsai (SLAC) Snowmass Meeting July 19th 2022

DM at Neutrino Frontier

- Indirect search via spectra of neutrino fluxes, typically from natural sources
 - Constraints of DM via supernova neutrino measurements
 - DM-induced neutrinos
- Direct search for boosted dark matter (BDM) from natural sources (<u>arXiv: 2207.02882</u>)
- Direct search for sub-GeV dark matter (light dark matter or LDM) from artificial sources (<u>arXiv:</u> 2207.06898)

Natural Source

Artificial Source

Visible interaction or decay products

- Neutrino beam = high intensity proton beam + fixed target
- Short baseline (or near detector) ν detectors
 - design to detect a lot of weakly interacting particles
 - usu. capable of tracking, particle ID, calorimetry
- Reactor neutrino source

Dark Sector Landscape

Model	Production	Detection
Higgs Portal	K, B decay	Decay $(\ell^+\ell^-)$
	π^0, η Decay	Scattering (χe^- , χX , Dark Tridents)
Vector Portal	Proton Bremmstrahlung	Decay $(\ell^+ \ell^-, \pi^+ \pi^-)$
	Drell-Yan	Inelastic Decay ($\chi \rightarrow \chi' \ell^+ \ell^-$)
Neutrino Portal	$\pi, K, D_{(s)}, B$ decay	Decay (many final states)
ALP Portal	Meson Decay	Decay $(\gamma \gamma)$
(γ -coupling dominant)	Photon Fusion	Inverse Primakoff process
	Primakoff Process	
Dark Neutrinos	SM Neutrino	Upscattering + Decay ($\nu \rightarrow \nu_D, \nu_D \rightarrow \nu \ell^+ \ell^-$)
Dipole Portal	Dalitz Decay	Decay ($\nu_D \rightarrow \nu \gamma$)
ν philic Mediators	SM Neutrino	Scattering (Missing p_T , SM Tridents)

Table 1: A selection of models that can be probed by neutrino beam experiments.

Detection: Interaction

Elastic Scattering

Resonance Scattering

Deep Inelastic Scattering

- DM-electron scattering: e signature
- DM-nucleon scattering: typically neutral current-like
 - Nuclear effects smear the topology
- Challenging on reducing and precisely constraining neutrino background

Detection: Decay Products

Exotic particle travels along the neutrino beam line and decay in flight or at rest

Ν

Effectively event rate production x decay rate. Example: heavy neutral lepton (N) decays into μπ

Detector

A decay channel

Examples

8

Elastic BDM

- Hadronic scattering
- Point back to the BDM origin, the Sun
- Take advantage of the low proton threshold in DUNE

Inelastic BDM

Complementarity and Desired Capabilities

12

Neutrino Measurement

- Look for deviation
 - Require precise measurements
- Indirect DM search
 - Require complementary experiments to pin down the interpretations
- Broad energy range of natural neutrino sources
 - Desire to cover as wide as possible
 - Experiments based on different technologies complement each other
 - Neutrino energy and flavors

DM Particle Detection

- Massive, underground neutrino detectors:
 - MeV detection threshold
 - Kiloton scale
 - Sensitive to boosted DM (with small fluxes)
 - Complementary to direct DM particle detectors
- Similar to measurements of neutrinos, desire broad energy ranges for particle detection and massive detector
- Challenging to distinguish the DM signature from neutrinos
- For distinctive signatures, require specific detector specs

Sub-GeV DM Search

- Hadron production and interaction from fixed target-proton beams less precise than electron beams
 - More sensitive to leptophobic models
 - Complementary to experiments based on electron beams
- Energy range (sub-GeV a few GeV) complementary to collider experiments
- Different detector components desired; e.g. dense target for interactions, sparse target for decays
- Neutrino background elimination is challenging

Summary & Outlook

- Neutrino experiments offer facilities for a wide range of DM search
- Complementarity among neutrino detectors based on different technologies, and other experiments
- Studies on landscape of exiting results, complementarity and guidelines on theoretical/experimental priorities desired
- Important to eliminate or constrain neutrino background

Backup

17

Natural Source

- Dark-matter-induced neutrinos
- Boosted dark matter
- Explosive slow-moving dark matter

Boosted Dark Matter

I. Cold dark matter captured by dark matter concentrated region, such as the Sun or Galaxy Center

> 3. Boosted dark matter interact with electrons or nucleons in detectors

> > Boosted DM

n

D

n

n

4. Look for scattered electrons or recoil protons

Inelastic Boosted DM

Production

HNL Detection

HNL travels along the neutrino beam line and decay in flight

Ν

Detect the decay products in the detector. Effectively event rate production x decay rate. Measure the mixing angle Θ_{µ4, e4, τ4} with each M_N Detector

A decay channel