Bolometer Experiments, Underground Facilities, and Discovery Science

Karsten Heeger Yale University

Bolometer Experiments, Underground Facilities, and Discovery Science

What are the underground facility needs for bolometer experiments to enable discovery science?

Not a complete review of all experiments

With input from Joe Formaggio, Yury Kolomensky, Ben Schmidt, and others

Bolometric Detectors

Bolometric detectors reach low thresholds with excellent energy resolution

Advanced detectors benefit from developments in quantum sensing (e.g phonon and light readout)

Science Goals

Neutrinoless double beta decay

Dark matter searches

Coherent neutrino scattering

Bolometric detectors address fundamental science questions with discovery potential

Synergies between HEP and NP science

Science Goals: Search for Neutrinoless Double Beta

Are neutrinos Dirac or Majorana particles?

$$(T_{1/2}^{0v})^{-1} = G_{0v} \cdot |M_{0v}|^2 \cdot |f|^2 / m_e^2$$

 $T_{0v} = 0v\beta\beta$ decay halflife $G_{0v} = \text{phase space (known)}$ $M_{0v} = \text{nuclear matrix element (NME)}$ f = new physics term

0vββ Decay Signature

Distinguishing peak at $Q_{\beta\beta}$ for $0\nu\beta\beta$ decay from continuum for discovery

Essential to understanding the physics of neutrinos mass

NP science

Bolometric Detectors

CUORE ¹³⁰Te

pure thermal detector (bolometer)

Low heat capacity @ T ~ 10 mK

- Excellent energy resolution (~0.2% FWHM)
- Detector response independent of particle types
- Flexibility in 0vββ candidate choice
- Detector response of O(1) sec if readout with e.g. Neutron Transmutation Doped (NTD)
 Gesensors

No PID Q = 2527 keV < 2615 keV

- Crystal heat capacity: C
- Conductivity of coupling to thermal bath: G
- Signal amplitude $\propto \Delta T = E_{dep} / C$
- Decay constant: τ = G / C

Successful History of Bolometer Experiments

30 years of experience in searching for 0vββ with cryogenic bolometers

CUORE is in a long series of experiments, from few grams to 742 kg of detector material

First tonne-scale bolometric experiment in the world

Brofferio, C. and Dell'Oro, S., Rev. Sci. Inst. 89, 121501 (2018)

CUPID builds on decades of bolometer experience at LNGS

LNGS: Laboratori Nazionali del Gran Sasso

Natural shielding from cosmic rays by the mountain of Gran Sasso 3600 meter water equivalent overburden

Well-established support for experiments and user access

Established Site and Infrastructure

Existing experimental site, unique cryogenic infrastructure.

LNGS provides

- technical, user support
- R&D facilities for detector development and testing

Prototype Demonstrators: Precursors to CUPID

CUPID-0

- Located in the CUORE-0 cryostat at LNGS, Italy
- 24 Zn⁸²Se (95% enrichment) +2 Zn^{nat}Se crystals
 5.17 kg of ⁸²Se
- Ge light detectors and NTD thermistors

Phys. Rev. Lett. **123**, 032501

CUPID Mo

- Located in the LSM, France
- 20 enriched Li₂¹⁰⁰MoO₄ (97% enrichment) crystals
 - 2.26 kg of ¹⁰⁰Mo
- Ge light detectors and NTD thermistors

Underground facilities around the world have enabled R&D towards CUPID

CUPID Background Goal

Means for background reduction

- Depth of experimental site
- radioassay of all components
- Advanced detectors (phonon and scintillation light readout)

Similar needs for $0\nu\beta\beta$ and dark matter experiments

Synergies with QIS

Science Goals: Coherent Nuclear Scattering

Fundamental coherent interactions

Is there BSM physics?

New forces?

J. Billard, J. Johnston, B. J. Kavanagh, arXiv:1805.01798

R.Hochberg et al arXiv:1604.06800v1 [hep-ph]

New particles?

Boson dark matter at low mass scales?

Karsten Heeger, Yale University
SNOWMASS, Seattle 2022

Special (Shallow) Sites with Shielding

Boron-loaded rubbe

Example: Ricochet at ILL

ILL Reactor Site

- 58 MW thermal power
- 20 events/day/kg at 7m from core
- Reactor on/off
- 15 mwe overburden for background reduction

from Joe Formaggio

SNOWMASS, Seattle 2022 Karsten Heeger, Yale University 13

Underground R&D Facilities - Examples

NEXUS multi-purpose low radioactivity cryogenic detector test facility

NEXUS - US R&D Facility

‡ Fermilab

- Located in MINOS experimental hall at Fermilab
 - 107 m underground (300 m.w.e)

Multi-purpose low-background cryogenic test facility

- Hosting at present
 - SuperCDMS Transition Edge Sensor based dark matter search detectors
 - Kinetic inductance detectors
 - Qubits

from Ben Schmidt

NEXUS - US R&D Facility

from Ben Schmidt

NEXUS - A Multi-Purpose Test Facility

Enables Broad Range of Experiments

SuperCDMS HVeV

Detector and prior results from above ground operation: Ren et al., Phys. Rev. D 104, 032010 Albakry et al., Phys. Rev. D 105, 11206

Qubit Array

Wilen, et al, Nature 594, 369--373 (2021)

Kinetic inductance Detector Array

Plan to do crystal verification tests for CUPID

from Ben Schmidt

Underground Facility Sites for Bolometer Experiments

Search for $0\nu\beta\beta$, dark matter and CE ν NS remain high priorities of the field. Experiments with discovery potential.

- Bolometer experiments are done at facilities worldwide. International collaboration and coordination is important.
- Infrastructure is complex, takes time to develop. Need to understand and characterize site-specific backgrounds.
- Deep underground locations are needed for searches for double beta decay and dark matter (LNGS, Modane, SNOLAB, SURF, etc....)
- Underground sites with shielding enable R&D and detector development, modest to good overburden essential for R&D on large bolometers.
- Special sites at reactors enable the study of other physics, e.g. coherent scattering.

Karsten Heeger, Yale University
SNOWMASS, Seattle 2022

Underground Facility Needs for Bolometer Experiments

R&D is critical for leadership in the field. Underground R&D facilities with general user access enable development of detector technology for next-generation experiments.

R&D Facilities

- Next-generation dark matter and $0\nu\beta\beta$ experiments need R&D facilities to test detectors at modest to good overburden.
- NEXUS is currently the only cryogenic facility in the US, SNOLab has CUTE

Radio-Assays/Low Background Counting

- Low-background counting often oversubscribed. Available at SURF, SNOLAB, and other labs.
- Current capacity and sensitivity of existing facilities will need to be further developed for next-generation $0\nu\beta\beta$ and dark matter experiments.

Shared Data/Simulations

Useful to develop common tools for evaluation of cosmogenic and environmental backgrounds

HEP, NP and QIS benefit from underground test facilities for bolometric detectors.

19