

Inferring neutrino mass from β-decay kinematics

Christine Claessens – University of Washington Seattle Snowmass Summer Study Workshop 2022

Neutrinos in the Standard Model

Neutrino mass is new physics

- Neutrinos are massless in the minimal Standard Model
- Neutrino flavor oscillation is evidence that neutrino masses are nonzero
- So not massless but very light. Why?
- Mass origin could be Beyond-Standard-Model physics
- Other open questions:
 - Normal or inverted ordering?
 - Dirac or Majorana nature of mass?
 - Leptogenesis?
 - Sterile neutrinos?

\rightarrow All of this is informed by measuring the mass directly

Probing the neutrino mass

Beta decay and electron capture

Direct mass measurement from decay kinematics

Beta decay or electron capture spectroscopy

- Spectral shape is distorted by neutrino masses
- Impact is largest near the spectrum endpoint
- Sensitive to incoherent sum:

$$m_{\beta}^2 = \sum_{i=1}^3 |U_{ei}|^2 m_i^2$$

Based on kinematics and energy conservation

- Independent of cosmological models
- Independent of Majorana or Dirac nature

Isotope requirements

- Short half life
- Low endpoint
- Well understood spectral shape

Most promising candidates: ${}^{3}H(\beta)$ and ${}^{163}Ho$ (EC)

Images: ECHo & KATRIN ²

Neutrino mass impact on decay spectra

Shape distortion most noticeable near endpoint

Decay rate proportional to phase space factor: .

 $\frac{d\Gamma}{dE} \sim \sum_{i} |U_{ei}|^{2} |(E_{0}-E)\sqrt{(E_{0}-E)^{2}-m_{i}^{2}} \cdot \Theta(E_{0}-E-m_{i})$

 \rightarrow Sum of incoherent spectra for all masses m_i

- Approximate spectrum using effective mass (for masses >0.05 eV): . $m_{\beta}^2 = \sum_{i=1}^{2} |U_{ei}|^2 m_i^2$ $\rightarrow \frac{d\Gamma}{dE} \sim (E_0 - E) \sqrt{(E_0 - E)^2 - m_\beta^2} \cdot \Theta(E_0 - E - m_\beta)$
- Fit spectrum shape in endpoint region to measure / limit effective mass .

State of the art tritium spectroscopy: The KATRIN experiment

with electric field in main spectrometer

Retarding potential filters high

KATRIN's current world-best laboratory limit

Best limit from decay experiments (unless Majorana)

- First campaign (spring 2019): $m_{B}^{2} < 1.1 \text{ eV}$ (90% CL)
- Second campaign (autumn 2021): $m_{\mu} < 0.9 \text{ eV}$ (90% CL)
- Integral spectrum: Scan 30 HV set points
- Combined result: **m**_β < **0.8 eV (90% CL)**

7

KATRIN's current world-best laboratory limit

Best limit from decay experiments (unless Majorana)

- First campaign (spring 2019): $m_{B}^{2} < 1.1 \text{ eV}$ (90% CL)
- Second campaign (autumn 2021): $m_{\mu} < 0.9 \text{ eV}$ (90% CL)
- Integral spectrum: Scan 30 HV set points
- Combined result: **m**_β < **0.8 eV (90% CL)**

Limit on cosmic relic neutrinos

Over-density of 10¹¹ excluded

8

Near future: KATRIN will reach design sensitivity

Systematic uncertainties will be much reduced

- Major improvement of background and source potential uncertainties
- Next unblinding of 30e6 electrons in ROI this year

Sensitivity of 0.2 – 0.3 eV in reach within few years

- Measurement or upper limit?
- KATRIN reduces previous mass limits by order of magnitude

Challenges for future tritium decay experiments

Sensitivity limitations

- Sensitivity beyond KATRIN requires higher statistics ~N^{1/4}
- Increasing density or volume not feasible
- Molecular final states yield irreducible systematic uncertainty ~100meV
 - \rightarrow Need atomic decay experiment to reach below that

Project 8: Cyclotron Radiation Emission Spectroscopy

Working principle

- Source gas in strong homogeneous magnetic field
- Electrons emit cyclotron radiation
- Magnetic bottle trap increases observation time
- Detect radiation and reconstruct kinetic energy
- Decay spectrum is reconstructed from start frequencies

ЗH

Project 8 Phase II results

Tritium and ^{83m}Kr data recorded with waveguide setup:

Demonstrated energy resolution

• $\Delta E_{FWHM} = 1.7 \text{ eV} (at 17.8 \text{ keV})$

Endpoint result in agreement with literature

40000

20000

-20000

-40000

18450

 m_{β^2} [eV²]

- Frequentist: 18549⁺²²₋₁₈eV
- Bayesian : 18553⁺¹⁷₋₁₇ eV

First neutrino mass limit with CRES

- Frequentist: $m_{B}^{2} < 178 \text{ eV/c}^{2}$ (90% C.L.)
- Bayesian: $m_{\beta}^{2} < 169 \text{ eV/c}^{2}$ (90% C.L.)

- Zero background counts above endpoint
- Sets limit < 3.10⁻¹⁰ eV⁻¹s⁻¹ (90% C.L.)

Project 8 aims for 40 meV final sensitivity

CRES is compatible with atomic tritium

- Gas source is transparent to microwave radiation
 → No need to extract electrons from source
- Atomic T has to be isolated from walls to avoid recombination
- Trap magnetically by coupling to spin of unpaired electron

Other advantages

- Frequency measurement \rightarrow High precision
- Low background \rightarrow More in
 - \rightarrow More info near endpoint
- Differential spectrum
- \rightarrow Increases statistics

Experimental concept:

- Thermally crack tritium molecules into atoms
- Cool to mK and transport to magneto-gravitational trap
- Detect cyclotron radiation with cavity

Hot atoms evaporate as

....

2500 K

confining field drops Cracker Accommodator Nozzle

^{cular} tritium recirculation and supply

Magnetic Quadrupole

elocity Selector & Cooler

Source = Detector

How to estimate sensitivity to m_{β}

Analytic estimation for differential spectrum measurement

- $m_{_{B}}$ decreases signal counts $N_{_{signal}}$ in energy interval ΔE below endpoint
- Statistical uncertainty on m_{β}^2 is related to the standard deviation of $N_{total} = N_{signal} + N_{background}$: $\sigma_{m_{\beta}^2, stat} \approx \frac{2}{3rt} \sqrt{r \cdot t \cdot \Delta E + \frac{bt}{\Delta E}}$
- **Systematic uncertainty** on m_{β}^2 results from all contributions to energy resolution σ_i and their uncertainties δ_i :

$$\sigma_{m_{\beta}^2, sys} = 4 \sqrt{\sum_{i} (\sigma_{sys,i}^2 \delta_{sys,i})^2}$$

- Contributions to energy resolution in tritium decay experiments:
 - Instrumental resolution
 - Thermal Doppler broadening
 - Final states

...

b : background rate

How to estimate sensitivity to m_{β}

Analytic estimation for differential spectrum measurement

- m_{R} decreases signal counts N_{signal} in energy interval ΔE below endpoint
- Statistical uncertainty on m_{β}^{2} is related to the standard deviation of $N_{total} = N_{signal} + N_{background}$: $\sigma_{m_{\rho}^{2}, stat} \approx \frac{2}{3rt} \sqrt{r \cdot t \cdot \Delta E} + \frac{bt}{\Delta E}$
- **Systematic uncertainty** on m_{β}^2 results from all contributions to energy resolution σ_i and their uncertainties δ_i :

$$\sigma_{m_{\beta}^2, sys} = 4 \sqrt{\sum_{i} \left(\sigma_{sys,i}^2 \delta_{sys,i}\right)^2}$$

- Contributions to energy resolution in tritium decay experiments:
 - Instrumental resolution
 - Thermal Doppler broadening
 - Final states

...

Neutrino mass in ¹⁶³Ho electron-capture decays

¹⁶³Ho decay spectral shape impacted by neutrino mass

- ¹⁶³Ho decays to ¹⁶³Dy^{*} by EC, emitting one v_{a} .
- Record de-excitation energy spectrum with microcalorimeters .
- Neutrino mass extracted from spectral shape near endpoint .
- Low endpoint is advantageous for accumulating required statistical power .

¹⁶³Ho decay:

Endpoint spectroscopy with microcalorimeters first suggested by De Rújula et al.

Neutrino mass in ¹⁶³Ho electron-capture decays

¹⁶³Ho decay spectral shape impacted by neutrino mass

- $$^{163}\text{Ho}$$ decays to ${}^{163}\text{Dy}^{*}$$ by EC, emitting one $\nu_{_{e}}$
- Record de-excitation energy spectrum with microcalorimeters
- Neutrino mass extracted from spectral shape near endpoint
- Low endpoint is advantageous for accumulating required statistical power

Spectrum shape is more complex than initially assumed

- Demonstrated by high-resolution data of ECHo and NuMECS
- Theoretical description much improved over past years
- Endpoint region is smooth and dominated by phase space factor

Experimental methods to measure electron capture on ¹⁶³Ho

Measuring the decay spectrum with microcalorimeters

- Detect temperature increase from released deexcitation energy with very sensitive temperature sensors
- Two methods pursued: Measure resistance (HOLMES, NuMECS) or magnetization (ECHo) changes at superconducting temperatures

A. Giachero et al., IEEE Transactions on Applied Superconductivity 31 (2021) 2100205

F. Gatti et al., Physics Letters B 398 (1997) 415

Detector arrays produced at KIP, Heidelberg University

¹⁶³Ho experiments are headed towards sub-eV sensitivity

ECHo's current result

- With improved theoretical description of decay spectrum
- Measured Q_{EC} = (2838 +/- 14) eV
- m_{β} < 150 eV (95% C.L.)
- Background < 1.6·10⁻⁴ eV⁻¹day⁻¹pixel⁻¹

Achievable sensitivity for ¹⁶³Ho EC experiment with 10¹³ events

Experimental requirements for sub-eV sensitivity

- Events near endpoint $10^{14} \rightarrow 1 \text{ MBq}$
- Energy resolution ΔE_{FWHM} < 3eV / Background level < 10⁻⁶ 10⁻⁴
- Pile-up in calorimeters $< 10^{-5} 10^{-4}$
- Multiplexing read out for large number of channels
 - \rightarrow Successfully demonstrated for small arrays

Cosmic neutrino background: The PTOLEMY experiment

Goal: Measure the cosmic neutrino background

- Neutrinos decoupled since 1s after BB: start of nucleosynthesis
- Expected number density $n_v = 112/cm^3$ per neutrino
- Velocity distribution $\langle v_{v} \rangle \sim T_{v}/m_{v}$

Neutrino capture spectrum

- Peak above $\beta\text{-decay}$ endpoint separated by $2\cdot m_{_{\!\nu}}$
- Shape depends on ordering
- Also sensitive to m_β
- Need excellent energy resolution to resolve

The PTOLEMY experiment

Experimental concept:

- Atomic tritium embedded on graphene substrate
- Single electron detection with RF
- Transverse drift filter removes low energy electrons
- Differential spectrum measurement of slow electrons with TES detectors ($\Delta E \sim 0.05 \text{ eV}$)

Demonstrator under development:

- Ultimate demonstrator goal: hundreds of µg tritium, energy resolution of 50 to 100 meV
- Demonstrator time scale 5 years

Summary and conclusion

Decay kinematics give laboratory access to neutrino mass

- Inferring the neutrino mass from decay kinematics is direct, model independent approach
 - Complementary to cosmological limits with different systematics
 - Could give clues to beyond ACDM and the Standard Model
- In a few years
 - KATRIN will find mass or set limit of 200 meV
 - CRES based tritium decay and bolometric ¹⁶³Ho capture are moving towards eV-scale sensitivity
- On longer term timescale
 - Next-generation experiments will reach sub-eV / 40 meV
 - PTOLEMY plans to measure CvB by neutrino capture on atomic tritium

Thank you for your attention!

Beta spectroscopy is sensitive to sterile neutrinos

Sterile neutrinos

- Proposed particles that do not interact via weak force but mix with "active" neutrinos
- Few-eV scale neutrino could explain anomalies in oscillation experiments
 - Reactor neutrino anomaly
 - Gallium anomaly (BEST)
 - Neutrino-4 short baseline

β -decay spectrum shows superposition of all mixing masses

- Sterile neutrino would show as kink in decay spectrum
- Neutrino mass measurements can set limits on sterile mass/mixing
- Large sterile mass searches require looking deeper into the spectrum

Tritium spectrum endpoint

Neutrino mass in beta decay

- Endpoint E_0 is highest electron energy for m_{β} =0 eV
 - \rightarrow Released energy Q minus recoil energy
- *Q* is calculated from the mass difference (Penning trap) corrected for dissociation / ionization energies
- For atomic tritium: $Q(T) = Q_A E_{ion}({}^{3}\text{He})$ \rightarrow With minimum recoil of 3.410 eV: $E_a = 18564.01(7)$ eV
- For molecular tritium: $Q(T_2) = Q_A - E_{ion}(T) - E_{dissoc}(T_2) + E_{dissoc}({}^{3}\text{HeT}^{+})$ $\rightarrow \text{With minimum recoil of 1.705 eV: } E_o = 18574.01(7) \text{ eV}$
- Uncertainty dominated by mass difference measurement
- For neutrino mass analysis, fixing the endpoint would require accuracy of $\leq 1 \text{ meV} \rightarrow \text{Endpoint}$ is left floating

