

shington $\mathbf{2022}$

lass

LEGEND, and KamL

Cen Collaborations

- Global experiment
- Inferring neutrino

s from Ov

gram an

line

decay

Neutrino Mass

Neutrino Mass

J. Detwiler

KamLAND, PRD 88, 033001 (2013)

In the neutrino's rest frame:

Dirac

Majorana

Two sterile components... ... or a new type of particle?

Neutrino Mass

KamLAND, PRD 88, 033001 (2013)

Neutrinoless Double-Beta Decay 0νββ — 2νββ **e**⁻ 0.9 - 0νββ (B.R. = 10⁻⁴) m_i 0.8 **HPGe resolution** U_{ei} U_{ei} 0.7 **Arbitrary Units** \mathcal{W} \mathcal{N}^{-} 0.6 0.5 Nuclear Process 0.4 (*A*, *Z*+2) 0.3 2νββ 0.2 **e**⁻ 0.1 Ve **V**_e 0.4 (Summed β Energy)/Q_{ββ} 0.2 0.8 **^***W*-**▲** *W*- $\Gamma^{0\nu} \sim \left| \sum U_{ei}^2 m_i \right|$: peak height probes the neutrino mass scale \rightarrow Nuclear Process \rightarrow

Light Neutrino Exchange

$$\Gamma^{0\nu} = G^{0\nu} |M^{0\nu}|^2 m_{\beta\beta}^2 \qquad m_{\beta\beta} = \left| \sum_i U_{ei}^2 m_{\beta\beta}^2 \right|^2 M_{ei}^2 m_{\beta\beta}^2 = 0$$

- v mixing and splitting parameters predict different ranges for $m_{\beta\beta}$ as a function of the unknown lightest neutrino mass
- IO: "hard" lower limit on $m_{\beta\beta}$, implies $T_{1/2} \lesssim 10^{28} {
 m yr}$
- NO: most m_{light} values give $T_{1/2} \lesssim 10^{30} \text{yr}$
- These are clear experimental goals

- A "Little Bang" that creates (just) two new matter particles (irrespective of mechanism)
 - Violates not just *L* but (*B*-*L*)
- Many mechanisms are available to generate $0\nu\beta\beta$ without the exchange of Majorana SM neutrinos
 - Schecter-Valle: all of these induce Majorana masses...
 - ... but they are many orders of magnitude smaller than Δm^2_{sol} (Duerr, Lindner, Merle, JHEP 2011, 91)
- Even for light neutrino exchange, the same HE physics that generates m_v will also give a shortrange contribution to $0\nu\beta\beta$ decay at leading order
 - Cirigliano *et al.*, PRL **120**, 202001 (2018)

$$T_{1/2}^{-1} = G_{01} g_A^4 \left| M_{\text{long}}^{0\nu} + M_{\text{short}}^{0\nu} \right|^2 \frac{m_{\beta\beta}^2}{m_e^2}$$

Truth In Advertising

- If $0v\beta\beta$ is observed:
 - scale
 - Even if it is, there are large uncertainties in the NME and the contact term \bullet
 - absolute neutrino masses
 - The unknown Majorana phases generate additional degeneracy
- If $0\nu\beta\beta$ is not observed:
 - It could be due to large cancellations between SM v exchange and other mechanisms...
 - Or due to cancellations in $m_{\beta\beta}$ itself from the Majorana phases... \bullet
 - Or it could be that neutrinos are Dirac

J. Detwiler

 $0\nu\beta\beta$ may not be mediated by SM neutrinos, in which case the decay rate is not connected to the neutrino mass

• Even if those are eventually calculated reliably, $m_{\beta\beta}$ could be in a region where its value is not correlated with the

 $\rightarrow 0\nu\beta\beta$ experiments do not directly or reliably probe the neutrino mass scale

Motivation for Light Neutrino Exchange $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda}\mathcal{L}_5 + \frac{1}{\Lambda^2}\mathcal{L}_6 + \dots$

- EFT: LNV appears in *L* terms of dimension 5, 7, 9...
- d = 5 operator (Weinberg operator) is uniquely a Majorana mass term for SM neutrinos
- Example: SO(10) GUT
 - SO(10) requires one new right-handed singlet N_R
 - N_R generates Majorana neutrino masses via the seesaw mechanism
 - CPV N_R decays immediately after the Big Bang generate the cosmic matter asymmetry (leptogenesis)

Cirigliano, Hamaguchi, Kayser, Murayama, Vissani, ...

- dominate the $0\nu\beta\beta$ decay rate.
- mass term for the SM neutrino.
- Light left-handed neutrino exchange sets clear experimental goal posts.
- negligible role.
- beta decay can provide information on the neutrino mass scale.

Modern Orthodoxy

• For a very large class of models, it is "natural" for light left-handed neutrino exchange to

• In some sense, light left-handed neutrino exchange is a "minimalistic" extension of the Standard Model, in that it requires no specific new field or symmetry, only a Majorana

• A discovery will be most readily first interpreted in terms of light left-handed neutrino exchange until evidence is available to suggest another mechanism may play a non-

• Within this framework, both the observation and non-observation of neutrinoless double-

Introduction and light

Global experimental

Inferring neutrino

ft-handed

Ou

gram and

kom 0vβ

ine

trino exchar

ec

Experimental Techniques

- Bolometers (CUORE/CUPID, AMoRE, CANDLES IV)
 - Measure $E(\sigma \sim 0.1-0.3\%)$ from phonons; granularity gives position info
 - Instrumenting with photon detectors for background rejection
- External trackers (NEMO3, SuperNEMO)
 - Trackers + calorimeters, measure $E(\sigma \sim 3-10\%)$ + tracks / positions + PID
- Scintillators (KamLAND-Zen, SNO+, CANDLES-III, Theia, ZICOS)
 - Measure $E(\sigma \sim 3-10\%)$ + position from scintillation light; some PID
- Semiconductors (COBRA, MAJORANA, GERDA, LEGEND)
 - Measure $E(\sigma \sim 0.05-0.3\%)$ from ionization; some tracking / position sensitivity
- TPCs (EXO, NEXT, PandaX, AXEL, NvDEx, DARWIN, LZ)
 - Collect scintillation + ionization: measure $E(\sigma \sim 0.4-3\%)$ + tracks / position + PID

NEXT-100

Majorana

COBRA

SuperNEMO

KamLAND-Zen

EXO-200

CUORE

NEMO3

Experimental Focus: Discovery

- Energy is the only observable that is both necessary and sufficient for discovery of $0\nu\beta\beta$ decay: effectively a Poisson counting experiment
- Relevant parameters: sensitive exposure and sensitive background

$$\mathcal{E} = \epsilon m_{iso}^{FV} t \qquad \mathcal{B} = N_{bg}/\mathcal{E}$$

• Discovery sensitivity: the value of $T_{1/2}$ for which an experiment has a 50% chance to observe a signal above background with 3σ significance:

$$T_{1/2}^{3\sigma} = \ln 2 \frac{N_A \mathcal{E}}{m_a S_{3\sigma} (\mathcal{B}\mathcal{E})}$$

Requirements:

PRD 96, 053001 (2017)

esolution (σ)		Sensitive exposure				Jre	Sensitive background Backgrour	Background rate		
(eV]		[(mol yr)/yr]					[events/(mol yr)] [events	[events/yr]		
10	10 ²	1	10	10 ²	10 ³	10 ⁴	$10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1} \ 10^{-2} \ 10^{-1} \ 1$	10 10 ²		
							current / recent	irrent / recent		
S							in construction	ı / propc		

liquid / gas TPCs (fiducialization)

liquid scintillators (fiducialization)

(reconstruction)

16

Sensitive background Background rate [events/(mol yr)] [events/yr] $10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{-2} 10^{-1} 1 10 10^{2}$

semiconductors (granular)

liquid / gas TPCs (monolithic)

liquid scintillators (monolithic)

bolometers (granular)

trackers (foils)

Discovery Sensitivities

J. Detwiler

QRPA NME

Discovery Sensitivities

Next-Generation Reach

- Next generation experiments seem poised to reach the IO minimum:
 - for most NME calculations
 - in multiple isotopes
 - With very different experimental techniques
- Some NME reach deep into the NO region
- Experiments are being designed with upgrade capability to push even further into the NO

Phys. Rev. C 104, L042501 (2021)

mßß and Mlight

• Present best limits:

- ¹³⁶Xe (KamLAND-Zen): $T_{1/2} > 2.3 \times 10^{26}$ yr arXiv:2203.02139 [hep-ex] (2022)
- 76 Ge (GERDA): $T_{1/2} > 1.8 \times 10^{26}$ yr PRL **125**, 252502 (2020)
- ¹³⁰Te (CUORE): T_{1/2} > 2.2x10²⁵ yr
 Nature 604, 53 (2022)
- Future goal: O(100x) further in $T_{1/2}$
 - Covers IO
 - Probes a significant portion of the NO
 - An aggressive experimental goal

arXiv:2202.01787

- E.g. $m_i \sim NO$ masses like other leptons, then suppressed
- Natural cutoff for $m_{min} > 10^{-13}$ eV from loop contributions
- Ton-scale experiments will probe ~all of IH, ~very little of NO

Bayesian Treatments

Ton-Scale Discovery Scenarios $m_{\beta\beta}$ [eV] • O(10%) statistical uncertainty: NME uncertainties $0\nu\beta\beta$ decay 1 it (90% dominate 10^{-1} $0\nu\beta\beta$ decay 1 it (90 CL). gest NME Follow up with experiments designed to probe the Inverted decay mechanism 10^{-2} Norma 10^{-3} 10^{-4} **10**⁻⁴ 10⁻¹ 10 m_{light} [eV]

- $T_{1/2} << 10^{28}$ years: 100s of counts

Ton-Scale Discovery Scenarios $m_{\beta\beta}$ [eV] • O(10%) statistical uncertainty: NME uncertainties $0\nu\beta\beta$ decay 1 it (90% dominate 10^{-1} 0νββ decay 1 gest NME it (90 CL), Follow up with experiments designed to probe the Inverteo decay mechanism 10^{-2} Normal Statistical uncertainty on same order as NME 10^{-3} Follow up with ~ton-scale experiments to confirm the discovery 10^{-4} L 10^{-4} 10⁻¹ 10 m_{light} [eV]

- $T_{1/2} << 10^{28}$ years: 100s of counts
- $T_{1/2} \sim 10^{28}$ years: ~10 counts

Ton-Scale Discovery Scenarios $m_{\beta\beta}$ [eV] • O(10%) statistical uncertainty: NME uncertainties it (90% $0\nu\beta\beta$ decay 1 dominate 10^{-1} 0ν $\beta\beta$ decay 1 it (90 CL), gest NME • Follow up with experiments designed to probe the nverted decay mechanism 10^{-2} Statistical uncertainty on same order as NME Normal 10^{-3} • Follow up with ~ton-scale experiments to confirm the discovery 10⁻¹ 10 m_{light} [eV] R&D required to push into NO, reduce cost

- $T_{1/2} << 10^{28}$ years: 100s of counts
- $T_{1/2} \sim 10^{28}$ years: ~10 counts
- $T_{1/2} >> 10^{28}$ years: < a few counts

- $0\nu\beta\beta$ is observed in a ton-scale experiment
 - IO: $m_3 < -m_{\beta\beta}$
 - NO: $m_1 \sim m_{\beta\beta}$
- $0\nu\beta\beta$ is not observed
 - IO: neutrinos are Dirac
 - NO: $m_1 < -m_{\beta\beta}$

mbb and mb

- $0\nu\beta\beta$ is observed in a ton-scale experiment
 - $m_{\beta} \sim m_{\beta\beta}$ but large uncertainty (~100%)
 - Project8 specs are somewhat loosened
 - If KATRIN measures m_{β} : chance to measure relative Majorana phase; NME issues
- $0\nu\beta\beta$ is not observed
 - $\sim 10 \text{ meV} < m_{\beta} < \sim 2m_{\beta\beta}$
 - If KATRIN measures m_{β} : neutrinos are Dirac

• $0\nu\beta\beta$ is observed in a ton-scale CL), smallest NME

CL), largest NME Would question NME, cosmology systematics

- $\Sigma \sim 3m_{\beta\beta}$ as an input for ΛCDM fits \bullet
- $0\nu\beta\beta$ is not observed
 - $\Sigma < \sim 3m_{\beta\beta}$
 - Little impact on cosmology

$$10^{-1}$$
 1
 m_{light} [eV]

$m_{\beta\beta}$ and Σ

Summary

- The international experimental program to search for $0\nu\beta\beta$ decay is robust and aggressive
- A steady march in sensitivity improvement is expected for at least a decade in multiple isotopes
- $0\nu\beta\beta$ decay is connected to the neutrino masses in a model-dependent way.
- However the connection is strong for a very broad class of theories. So both a discovery or a limit from the ton-scale experiments will provide important information on the neutrino nature and masses

