Model-Dependence in $0\nu\beta\beta$ Probes

André de Gouvêa – Northwestern University

NF-CF Neutrino mass scale with beta decay kinematics, double beta decay, and cosmology

Community Summer Study – Snowmass – Seattle, July 17–26, 2022

July 22, 2022 ______ $0
u\beta\beta$ and m_{ν}

André de Gouvêa ______ Northwestern

Fork on the Road: Are Neutrinos Majorana or Dirac Fermions?

[9 out of 10 theorists agree: "Best" Question in Neutrino Physics Today!]

July 22, 2022 _______ $0
u\beta\beta$ and $m_
u$

And How Light is the Lightest Neutrino Anyway?

So far, we've only been able to measure neutrino mass-squared differences.

The lightest neutrino mass is only relatively poorly constrained.

qualitatively different scenarios allowed:

- $m_{\text{lightest}}^2 \equiv 0;$
- $m_{\text{lightest}}^2 \ll \Delta m_{12,13}^2$;
- $m_{\text{lightest}}^2 \gg \Delta m_{12,13}^2$.

Need information outside of neutrino oscillations:

[Cosmology, β -Decay, $0\nu\beta\beta$]

Searches for Lepton-Number Violation Depend on The Neutrino Masses

Best Bet: search for

Neutrinoless Double-Beta

Decay:

$$Z \to (Z+2)e^-e^-$$

Helicity Suppressed Amplitude $\propto \frac{m_{ee}}{E}$

Observable: $m_{ee} \equiv \sum_{i} U_{ei}^{2} m_{i}$

← no longer lamp-post physics!

 $0
u\beta\beta$ and $m_{
u}$

FIG. 4: Effective Majorana neutrino mass $\langle m_{\beta\beta} \rangle$ as a function of the lightest neutrino mass. The dark shaded regions are predictions based on best-fit values of neutrino oscillation parameters for the normal ordering (NO) and the inverted ordering (IO), and the light shaded regions indicate the 3σ ranges calculated from oscillation parameter uncertainties [23, 24]. The regions below the horizontal lines are allowed at 90% C.L. with ¹³⁶Xe from KamLAND-Zen (this work) considering an improved phase space factor calculation [25, 26] and commonly used nuclear matrix element estimates, EDF [27-29] (solid lines), IBM [30, 31] (dashed lines), SM [32–34] (dot-dashed lines), QRPA [35-39] (dotted lines). The sidepanel shows the corresponding limits for ¹³⁶Xe, ⁷⁶Ge [40], and ¹³⁰Te [41], and theoretical model predictions on $\langle m_{\beta\beta} \rangle$, $J_{u}(a)$ Ref. [2] Ref. [3], and (c) Ref. [4] (shaded boxes), in the IO region.

Lots of Experimental Activity!

Moving Towards Ton-Scale Expts.

(LEGEND, CUPID, nEXO, etc)

[KamLAND-Zen Coll. (Abe et al), 2203.02139 [hep-ex]]

Caveats: $0\nu\beta\beta$ searches and informing neutrino properties

- Non-observation does not imply the neutrinos are Dirac fermions ("you can't prove a negative");
- Only informs the neutrino masses if the neutrinos are Majorana fermions;
- Model-dependent, indirect probe of neutrino masses. While a nonzero rate for $0\nu\beta\beta$ implies neutrinos are massive Majorana fermions, the connection to nonzero neutrino masses can be very indirect. How do we learn that we are measuring what we think we are measuring?
- Real life is hard. Large uncertainties in translating the half-life to the effective neutrino mass (nuclear matrix elements).

July 22, 2022 _______ $0
u\beta\beta$ and $m_
u$

Comments on the "funnel" region, $m_{\beta\beta} = 0$

- $m_{\beta\beta} = \sum_{i} U_{ei}^{2} m_{i}$. Sum of three complex numbers. It can vanish if they define a triangle in the complex plane. Easy to see this only happens in the Normal Ordering.
- This possibility can be ruled out by other experiments. For example, we could learn that $m_{\text{least}} > 0.01 \text{ eV}$. Other example, in some theoretical models, $m_{\beta\beta} = 0$ is not an option (e.g., in models where m_{least} vanishes.)
- However, $m_{\beta\beta}$ very small is not "fine-tuning." $m_{\beta\beta} \equiv m_{ee}$:

$$m_
u = \left(egin{array}{ccc} m_{ee} & m_{e\mu} & m_{e au} \ m_{e\mu} & m_{\mu\mu} & m_{\mu au} \ m_{e au} & m_{\mu au} & m_{ au au} \end{array}
ight)$$

It is easy to imagine a hierarchy to the elements of the mass matrix (remember, e.g., $m_e \ll m_\mu \ll m_\tau$).

July 22, 2022 _______ $0
u\beta\beta$ and $m_{
u}$

Another example: Everyone's Favorite Neutrino Mass Model

A simple^a, renormalizable Lagrangian that allows for neutrino masses is

$$\mathcal{L}_{\nu} = \mathcal{L}_{\text{old}} - \frac{\lambda_{\alpha i}}{\lambda_{\alpha i}} L^{\alpha} H N^{i} - \sum_{i=1}^{3} \frac{M_{i}}{2} N^{i} N^{i} + H.c.,$$

where N_i (i = 1, 2, 3, for concreteness) are SM gauge singlet fermions. \mathcal{L}_{ν} is the most general, renormalizable Lagrangian consistent with the SM gauge group and particle content, plus the addition of the N_i fields.

After electroweak symmetry breaking, \mathcal{L}_{ν} describes, besides all other SM degrees of freedom, six Majorana fermions: six neutrinos.

July 22, 2022 ____

^aOnly requires the introduction of three fermionic degrees of freedom, no new interactions or symmetries.

Constraining the Seesaw Lagrangian

Theoretical upper bound:
$$M_N < 7.6 \times 10^{24} \text{ eV} \times \left(\frac{0.1 \text{ eV}}{m_\nu}\right) \Rightarrow \Rightarrow \Rightarrow$$

July 22, 2022

 $0
u\beta\beta$ and $m_{
u}$

Neutrinoless Double-Beta Decay

The exchange of Majorana neutrinos mediates lepton-number violating neutrinoless double-beta decay, $0\nu\beta\beta$: $Z \to (Z+2)e^-e^-$.

For light enough neutrinos, the amplitude for $0\nu\beta\beta$ is proportional to the effective neutrino mass

$$m_{ee} = \left| \sum_{i=1}^{6} U_{ei}^2 m_i \right| \sim \left| \sum_{i=1}^{3} U_{ei}^2 m_i + \sum_{i=1}^{3} \vartheta_{ei}^2 M_i \right|.$$

However, upon further examination, $m_{ee} = 0$ in the low-energy seesaw.

The contribution of light and heavy neutrinos exactly cancels! This remains a good approximation as long as $M_i \ll 100 \text{ MeV}$.

$$\left[\begin{array}{cc} \mathcal{M} = \begin{pmatrix} 0 & \mu^{\mathrm{T}} \\ \mu & M \end{array}\right) \rightarrow m_{ee} \text{ is identically zero!} \right]$$

July 22, 2022 ____

(lack of) sensitivity in $0\nu\beta\beta$ due to seesaw sterile neutrinos

[AdG, Jenkins, Vasudevan, hep-ph/0608147]

July 22, 2022 ______ $0
u\beta\beta$ and $m_
u$

André de Gouvêa _______ Northwestern

These contributions can compete if scale is not too high (10-100 TeV) and lead to new mechanisms at the nuclear scale

[talk by V. Cirigliano, RP Plenary Session (07/21)]

July 22, 2022 ______ $0
u\beta\beta$ and m_{ν}

There are many, many more, different ways to give neutrinos Majorana masses!

E.g., Higher Order Neutrino Masses from $\Delta L = 2$ Physics

Imagine that there is new physics that breaks lepton number by 2 units at some energy scale Λ , but that it does not, in general, lead to neutrino masses at the tree level.

We know that neutrinos will get a mass at some order in perturbation theory – which order is model dependent!

0	Operator	$\Lambda \ [{ m TeV}]$
\mathcal{O}_1	(LH)(LH)	$6 \times 10^{10-11}$
\mathcal{O}_2	(LL)(LH)	$e^c \left 4 \times 10^{6-7} \right $

\mathcal{O}_2	$(LL)(LH)\epsilon$	$e^c \left 4 \times 10^{6-7} \right $
\mathcal{O}_{3_a}	(LL)(QH)	$d^c = 2 \times 10^{4-5}$
\mathcal{O}_{3_b}	(LQ)(LH)	$d^c \left[1 \times 10^{7-8} \right]$
\mathcal{O}_{4_a}	$(L\overline{Q})(LH)$	$\overline{u^c} \stackrel{4 \times 10^{8-9}}{}$
\mathcal{O}_{4_b}	$(LL)(\overline{Q}H)\overline{Q}$	$\overline{u^c}$ 2 – 7
\mathcal{O}_8	$(LH)\overline{e^cu^c}$	$\begin{array}{c c} l^c & 6 \times 10^{2-3} \end{array}$

0	Operator	Λ [TeV]
\mathcal{O}_5	$(L\overline{H})(LH)(QH)d^c$	$6 \times 10^{4-5}$
\mathcal{O}_6	$(LH)(L\overline{H})(\overline{Q}H)\overline{u^c}$	$2 \times 10^{6-7}$
07	$(LH)(QH)(\overline{Q}H)\overline{e^c}$	$4 \times 10^{1-2}$
\mathcal{O}_9	$(LL)(LL)e^{c}e^{c}$	$3 \times 10^{2-3}$
\mathcal{O}_{10}	$(LL)(LQ)e^cd^c$	$6 \times 10^{2-3}$
\mathcal{O}_{11_a}	$(LL)(QQ)d^cd^c$	3 – 30
\mathcal{O}_{11_b}	$(LQ)(LQ)d^cd^c$	$2\times10^{3-4}$

\mathcal{O}_{12_a}	$(L\overline{Q})(L\overline{Q})\overline{u^cu^c}$	$2 \times 10^{6-7}$
\mathcal{O}_{12_b}	$(LL)(\overline{QQ})\overline{u^cu^c}$	0.3 - 0.6
\mathcal{O}_{13}	$(L\overline{Q})(LL)\overline{u^c}e^c$	$2 \times 10^{4-5}$
\mathcal{O}_{14_a}	$(LL)(Q\overline{Q})\overline{u^c}d^c$	10 ²⁻³
\mathcal{O}_{14_b}	$(L\overline{Q})(LQ)\overline{u^c}d^c$	$6 \times 10^{4-5}$
\mathcal{O}_{15}	$(LL)(L\overline{L})d^c\overline{u^c}$	10 ²⁻³
O ₁₆	$(LL)e^{c}d^{c}\overline{e^{c}u^{c}}$	0.2 - 2
\mathcal{O}_{17}	$(LL)d^cd^c\overline{d^c}\overline{u^c}$	0.2 - 2

\mathcal{O}_{18}	$(LL)d^cu^c\overline{u^cu^c}$	0.2 - 2
\mathcal{O}_{19}	$(LQ)d^cd^c\overline{e^cu^c}$	0.1 - 1
\mathcal{O}_{20}	$(L\overline{Q})d^c\overline{u^c}e^c\overline{u^c}$	4 – 40
\mathcal{O}_s	$e^c e^c u^c u^c \overline{d^c d^c}$	10-3

- Ignore Lorentz, SU(3)_C structure
- SU(2)_L contractions denoted with parentheses
- Λ indicates range in which $m_{\nu} \in [0.05 \text{ eV}, 0.5 \text{ eV}]$

hep-ph/0106054; K.S. Babu & C.N. Leung arXiv:0708.1344; A. de Gouvêa & J. Jenkins arXiv:1212.6111; P.W. Angel, et al. arXiv:1404.4057; A. de Gouvêa, at al.

LNV from Effective Operators

What do these operators do? Consider $0 \downarrow 14b = (LQ)(LQ)u^{\dagger}c d^{\dagger}c$.

■ They generate neutrino masses:

July 22, 2022 ______ $0
u\beta\beta$ and m_{ν}

July 22, 2022 -

 $-0
u\beta\beta$ and m_{ν}

FIG. 5: $m_{\beta\beta}$ as a function of m_{β} , for both the normal (lighter, blue) and inverted (darker, red) mass orderings. The bands are a consequence of allowing for all possible values of the relative Majorana phases. For everything else, we use the current best-fit values of the oscillation parameters from [29]. The whited-out region inside the light-blue contour is meant to highlight the values of m_{β} for which $m_{\beta\beta}$ can vanish exactly. We assume the neutrinos are Majorana fermions. If neutrinos are Dirac fermions, $m_{\beta\beta} = 0$. The grey, horizontal band corresponds to the 95% CL upper bound on $m_{\beta\beta}$ from GERDA [37]. The width of the band is a consequence of uncertainties in the nuclear matrix element for the neutrinoless double-beta decay of ⁷⁶Ge. The vertical line corresponds to the current 90% upper bound on m_{β} [56].

[Formaggio, AdG, Robertson, Phys.Rept. 914 (2021)]

Concluding Remarks

- Searches for $0\nu\beta\beta$ are the most promising way to learn about the nature of neutrinos.
 - However, not guaranteed to make a discovery, even if the neutrinos are
 Majorana fermions. (Flavor effects, new physics "cancellations.")
 - It is wise to consider other possibilities. $\mu^- \to e^+$ -conversion is an excellent second-best. Independently, it is wise to search everywhere!
- Searches for $0\nu\beta\beta$ can provide non-trivial information on the neutrino mass ordering and the absolute values of the neutrino masses.
 - However, they are an indirect probe of neutrino masses. There aren't any real neutrinos here. It is right there in the name!
 - After a discovery is made, deciding the connection between $0\nu\beta\beta$ and m_{ν} will be the next big challenge.
 - Other m_{ν} probes cosmic surveys, β -decay can help a lot.
- What if the neutrinos are Dirac fermions?

July 22, 2022 ______ $0
u\beta\beta$ and $m_{
u}$