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27 Massless vectors and examples from QED

Similarly, [13] = 0. Thus [12] = [23] = [31] = 0 which means that these three square spinors
are proportional:

|1] / |2] / |3] . (2.58)

Alternatively, 3-particle kinematics could hold with square brackets non-vanishing and

|1i / |2i / |3i . (2.59)

To summarize, special 3-particle kinematics is the statement that for three on-shell massless
momenta satisfying momentum conservation the associated angle and square spinors must
satisfy either (2.58) or (2.59). As a consequence:

1. a non-vanishing on-shell 3-particle amplitude with only massless particles can only depend
on either angle brackets or square brackets of the external momenta, never both.

2. Since for real momenta, angle and square spinors are each others complex conjugates, on-
shell 3-particle amplitude of only massless particles can only be non-vanishing in complex
momenta.4 Although they do not occur in Nature, the massless complex momentum 3-
point amplitudes are extremely useful for building up higher-point amplitudes recursively.
In many cases, the on-shell 3-point amplitudes are the key building blocks. More about
this in Chapter 3.

• Finally, let us comment on choices of q in (2.54). Naively, it might seem that choosing |q] / |2]
gives zero for the amplitude; this would be inconsistent with our q-independent non-vanishing
result (2.56). However, this choice gives [3q] / [23], so the denominator therefore vanishes
by special kinematics. One could say that the zero [22] in the numerator is cancelled by the
zero [23] in the denominator, or simply that |q] / |2] is not a legal choice since it makes the
polarization vector ✏µ

�
(p3; q) divergent.

At this stage it is natural to ask how, then, we know if a given 3-point amplitude of massless
particles should depend on angle brackets or square-brackets? This has a good answer, which we
reveal in Section 2.6. For now, let us carry on exploring QED amplitudes in the spinor-helicity
formalism.

. Example. Consider the QED Compton scattering process: e�� ! e��. By crossing symmetry,
we can view this as the amplitude A4(f̄f��) with all particles outgoing and labeled by
momenta 1,2,3,4:

iA4(f̄f��) =
1 2

3 4

+
1 2

34

= (ie)2 u2 /✏4
�i(/p1 + /p3)

(p1 + p3)2
/✏3 v1 + (3 $ 4) . (2.60)

Note that we have an odd number of gamma-matrices sandwiched between two spinors. If

4 Or using a (�,+,�,+) spacetime signature, cf. footnote 1.

27 Massless vectors and examples from QED

Similarly, [13] = 0. Thus [12] = [23] = [31] = 0 which means that these three square spinors
are proportional:

|1] / |2] / |3] . (2.58)

Alternatively, 3-particle kinematics could hold with square brackets non-vanishing and

|1i / |2i / |3i . (2.59)

To summarize, special 3-particle kinematics is the statement that for three on-shell massless
momenta satisfying momentum conservation the associated angle and square spinors must
satisfy either (2.58) or (2.59). As a consequence:

1. a non-vanishing on-shell 3-particle amplitude with only massless particles can only depend
on either angle brackets or square brackets of the external momenta, never both.

2. Since for real momenta, angle and square spinors are each others complex conjugates, on-
shell 3-particle amplitude of only massless particles can only be non-vanishing in complex
momenta.4 Although they do not occur in Nature, the massless complex momentum 3-
point amplitudes are extremely useful for building up higher-point amplitudes recursively.
In many cases, the on-shell 3-point amplitudes are the key building blocks. More about
this in Chapter 3.

• Finally, let us comment on choices of q in (2.54). Naively, it might seem that choosing |q] / |2]
gives zero for the amplitude; this would be inconsistent with our q-independent non-vanishing
result (2.56). However, this choice gives [3q] / [23], so the denominator therefore vanishes
by special kinematics. One could say that the zero [22] in the numerator is cancelled by the
zero [23] in the denominator, or simply that |q] / |2] is not a legal choice since it makes the
polarization vector ✏µ

�
(p3; q) divergent.

At this stage it is natural to ask how, then, we know if a given 3-point amplitude of massless
particles should depend on angle brackets or square-brackets? This has a good answer, which we
reveal in Section 2.6. For now, let us carry on exploring QED amplitudes in the spinor-helicity
formalism.

. Example. Consider the QED Compton scattering process: e�� ! e��. By crossing symmetry,
we can view this as the amplitude A4(f̄f��) with all particles outgoing and labeled by
momenta 1,2,3,4:

iA4(f̄f��) =
1 2

3 4

+
1 2

34

= (ie)2 u2 /✏4
�i(/p1 + /p3)

(p1 + p3)2
/✏3 v1 + (3 $ 4) . (2.60)

Note that we have an odd number of gamma-matrices sandwiched between two spinors. If

4 Or using a (�,+,�,+) spacetime signature, cf. footnote 1.

Amplitude
<latexit sha1_base64="TTTPNSS8rWR0anlLIFEO/mYKbBE=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOZpMhM7PLPISw5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFKWfa+P63V1pb39jcKm9Xdnb39g+qh0dtnVhFaIskPFHdCGvKmaQtwwyn3VRRLCJOO9HkLvc7T1RplshHM01pKPBIspgRbHKpr60YVGt+3Z8DrZKgIDUo0BxUv/rDhFhBpSEca90L/NSEGVaGEU5nlb7VNMVkgke056jEguowm986Q2dOGaI4Ua6kQXP190SGhdZTEblOgc1YL3u5+J/Xsya+CTMmU2uoJItFseXIJCh/HA2ZosTwqSOYKOZuRWSMFSbGxVNxIQTLL6+S9kU9uKpfPlzWGrdFHGU4gVM4hwCuoQH30IQWEBjDM7zCmye8F+/d+1i0lrxi5hj+wPv8ATTZjlw=</latexit>X

Traditional

Amplitudes
constructed 
from analytic 
properties &
symmetries

Modern on-shell techniques allow us to
calculate scattering amplitudes efficiently

Model w/ 
spectrum of 
particles,
symmetries 

Modern On-shell



Lagrangian

Feynman Rules

27 Massless vectors and examples from QED

Similarly, [13] = 0. Thus [12] = [23] = [31] = 0 which means that these three square spinors
are proportional:

|1] / |2] / |3] . (2.58)

Alternatively, 3-particle kinematics could hold with square brackets non-vanishing and

|1i / |2i / |3i . (2.59)

To summarize, special 3-particle kinematics is the statement that for three on-shell massless
momenta satisfying momentum conservation the associated angle and square spinors must
satisfy either (2.58) or (2.59). As a consequence:

1. a non-vanishing on-shell 3-particle amplitude with only massless particles can only depend
on either angle brackets or square brackets of the external momenta, never both.

2. Since for real momenta, angle and square spinors are each others complex conjugates, on-
shell 3-particle amplitude of only massless particles can only be non-vanishing in complex
momenta.4 Although they do not occur in Nature, the massless complex momentum 3-
point amplitudes are extremely useful for building up higher-point amplitudes recursively.
In many cases, the on-shell 3-point amplitudes are the key building blocks. More about
this in Chapter 3.

• Finally, let us comment on choices of q in (2.54). Naively, it might seem that choosing |q] / |2]
gives zero for the amplitude; this would be inconsistent with our q-independent non-vanishing
result (2.56). However, this choice gives [3q] / [23], so the denominator therefore vanishes
by special kinematics. One could say that the zero [22] in the numerator is cancelled by the
zero [23] in the denominator, or simply that |q] / |2] is not a legal choice since it makes the
polarization vector ✏µ

�
(p3; q) divergent.

At this stage it is natural to ask how, then, we know if a given 3-point amplitude of massless
particles should depend on angle brackets or square-brackets? This has a good answer, which we
reveal in Section 2.6. For now, let us carry on exploring QED amplitudes in the spinor-helicity
formalism.

. Example. Consider the QED Compton scattering process: e�� ! e��. By crossing symmetry,
we can view this as the amplitude A4(f̄f��) with all particles outgoing and labeled by
momenta 1,2,3,4:

iA4(f̄f��) =
1 2

3 4

+
1 2

34

= (ie)2 u2 /✏4
�i(/p1 + /p3)

(p1 + p3)2
/✏3 v1 + (3 $ 4) . (2.60)

Note that we have an odd number of gamma-matrices sandwiched between two spinors. If

4 Or using a (�,+,�,+) spacetime signature, cf. footnote 1.

27 Massless vectors and examples from QED

Similarly, [13] = 0. Thus [12] = [23] = [31] = 0 which means that these three square spinors
are proportional:

|1] / |2] / |3] . (2.58)

Alternatively, 3-particle kinematics could hold with square brackets non-vanishing and

|1i / |2i / |3i . (2.59)

To summarize, special 3-particle kinematics is the statement that for three on-shell massless
momenta satisfying momentum conservation the associated angle and square spinors must
satisfy either (2.58) or (2.59). As a consequence:

1. a non-vanishing on-shell 3-particle amplitude with only massless particles can only depend
on either angle brackets or square brackets of the external momenta, never both.

2. Since for real momenta, angle and square spinors are each others complex conjugates, on-
shell 3-particle amplitude of only massless particles can only be non-vanishing in complex
momenta.4 Although they do not occur in Nature, the massless complex momentum 3-
point amplitudes are extremely useful for building up higher-point amplitudes recursively.
In many cases, the on-shell 3-point amplitudes are the key building blocks. More about
this in Chapter 3.

• Finally, let us comment on choices of q in (2.54). Naively, it might seem that choosing |q] / |2]
gives zero for the amplitude; this would be inconsistent with our q-independent non-vanishing
result (2.56). However, this choice gives [3q] / [23], so the denominator therefore vanishes
by special kinematics. One could say that the zero [22] in the numerator is cancelled by the
zero [23] in the denominator, or simply that |q] / |2] is not a legal choice since it makes the
polarization vector ✏µ

�
(p3; q) divergent.

At this stage it is natural to ask how, then, we know if a given 3-point amplitude of massless
particles should depend on angle brackets or square-brackets? This has a good answer, which we
reveal in Section 2.6. For now, let us carry on exploring QED amplitudes in the spinor-helicity
formalism.

. Example. Consider the QED Compton scattering process: e�� ! e��. By crossing symmetry,
we can view this as the amplitude A4(f̄f��) with all particles outgoing and labeled by
momenta 1,2,3,4:

iA4(f̄f��) =
1 2

3 4

+
1 2

34

= (ie)2 u2 /✏4
�i(/p1 + /p3)

(p1 + p3)2
/✏3 v1 + (3 $ 4) . (2.60)

Note that we have an odd number of gamma-matrices sandwiched between two spinors. If

4 Or using a (�,+,�,+) spacetime signature, cf. footnote 1.

Amplitude
<latexit sha1_base64="TTTPNSS8rWR0anlLIFEO/mYKbBE=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOZpMhM7PLPISw5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFKWfa+P63V1pb39jcKm9Xdnb39g+qh0dtnVhFaIskPFHdCGvKmaQtwwyn3VRRLCJOO9HkLvc7T1RplshHM01pKPBIspgRbHKpr60YVGt+3Z8DrZKgIDUo0BxUv/rDhFhBpSEca90L/NSEGVaGEU5nlb7VNMVkgke056jEguowm986Q2dOGaI4Ua6kQXP190SGhdZTEblOgc1YL3u5+J/Xsya+CTMmU2uoJItFseXIJCh/HA2ZosTwqSOYKOZuRWSMFSbGxVNxIQTLL6+S9kU9uKpfPlzWGrdFHGU4gVM4hwCuoQH30IQWEBjDM7zCmye8F+/d+1i0lrxi5hj+wPv8ATTZjlw=</latexit>X

Traditional

Amplitudes
constructed 
from analytic 
properties &
symmetries

Modern on-shell techniques allow us to
calculate scattering amplitudes efficiently

Model w/ 
spectrum of 
particles,
symmetries 

Modern On-shell

Can also explore the space of Quantum Field 
Theories through the knowledge of possible 
scattering processes given physical states 
and symmetries



Lagrangian

Feynman Rules

27 Massless vectors and examples from QED

Similarly, [13] = 0. Thus [12] = [23] = [31] = 0 which means that these three square spinors
are proportional:

|1] / |2] / |3] . (2.58)

Alternatively, 3-particle kinematics could hold with square brackets non-vanishing and

|1i / |2i / |3i . (2.59)

To summarize, special 3-particle kinematics is the statement that for three on-shell massless
momenta satisfying momentum conservation the associated angle and square spinors must
satisfy either (2.58) or (2.59). As a consequence:

1. a non-vanishing on-shell 3-particle amplitude with only massless particles can only depend
on either angle brackets or square brackets of the external momenta, never both.

2. Since for real momenta, angle and square spinors are each others complex conjugates, on-
shell 3-particle amplitude of only massless particles can only be non-vanishing in complex
momenta.4 Although they do not occur in Nature, the massless complex momentum 3-
point amplitudes are extremely useful for building up higher-point amplitudes recursively.
In many cases, the on-shell 3-point amplitudes are the key building blocks. More about
this in Chapter 3.

• Finally, let us comment on choices of q in (2.54). Naively, it might seem that choosing |q] / |2]
gives zero for the amplitude; this would be inconsistent with our q-independent non-vanishing
result (2.56). However, this choice gives [3q] / [23], so the denominator therefore vanishes
by special kinematics. One could say that the zero [22] in the numerator is cancelled by the
zero [23] in the denominator, or simply that |q] / |2] is not a legal choice since it makes the
polarization vector ✏µ

�
(p3; q) divergent.

At this stage it is natural to ask how, then, we know if a given 3-point amplitude of massless
particles should depend on angle brackets or square-brackets? This has a good answer, which we
reveal in Section 2.6. For now, let us carry on exploring QED amplitudes in the spinor-helicity
formalism.

. Example. Consider the QED Compton scattering process: e�� ! e��. By crossing symmetry,
we can view this as the amplitude A4(f̄f��) with all particles outgoing and labeled by
momenta 1,2,3,4:

iA4(f̄f��) =
1 2

3 4

+
1 2

34

= (ie)2 u2 /✏4
�i(/p1 + /p3)

(p1 + p3)2
/✏3 v1 + (3 $ 4) . (2.60)

Note that we have an odd number of gamma-matrices sandwiched between two spinors. If

4 Or using a (�,+,�,+) spacetime signature, cf. footnote 1.

27 Massless vectors and examples from QED

Similarly, [13] = 0. Thus [12] = [23] = [31] = 0 which means that these three square spinors
are proportional:

|1] / |2] / |3] . (2.58)

Alternatively, 3-particle kinematics could hold with square brackets non-vanishing and

|1i / |2i / |3i . (2.59)

To summarize, special 3-particle kinematics is the statement that for three on-shell massless
momenta satisfying momentum conservation the associated angle and square spinors must
satisfy either (2.58) or (2.59). As a consequence:

1. a non-vanishing on-shell 3-particle amplitude with only massless particles can only depend
on either angle brackets or square brackets of the external momenta, never both.

2. Since for real momenta, angle and square spinors are each others complex conjugates, on-
shell 3-particle amplitude of only massless particles can only be non-vanishing in complex
momenta.4 Although they do not occur in Nature, the massless complex momentum 3-
point amplitudes are extremely useful for building up higher-point amplitudes recursively.
In many cases, the on-shell 3-point amplitudes are the key building blocks. More about
this in Chapter 3.

• Finally, let us comment on choices of q in (2.54). Naively, it might seem that choosing |q] / |2]
gives zero for the amplitude; this would be inconsistent with our q-independent non-vanishing
result (2.56). However, this choice gives [3q] / [23], so the denominator therefore vanishes
by special kinematics. One could say that the zero [22] in the numerator is cancelled by the
zero [23] in the denominator, or simply that |q] / |2] is not a legal choice since it makes the
polarization vector ✏µ

�
(p3; q) divergent.

At this stage it is natural to ask how, then, we know if a given 3-point amplitude of massless
particles should depend on angle brackets or square-brackets? This has a good answer, which we
reveal in Section 2.6. For now, let us carry on exploring QED amplitudes in the spinor-helicity
formalism.

. Example. Consider the QED Compton scattering process: e�� ! e��. By crossing symmetry,
we can view this as the amplitude A4(f̄f��) with all particles outgoing and labeled by
momenta 1,2,3,4:

iA4(f̄f��) =
1 2

3 4

+
1 2

34

= (ie)2 u2 /✏4
�i(/p1 + /p3)

(p1 + p3)2
/✏3 v1 + (3 $ 4) . (2.60)

Note that we have an odd number of gamma-matrices sandwiched between two spinors. If

4 Or using a (�,+,�,+) spacetime signature, cf. footnote 1.

Amplitude
<latexit sha1_base64="TTTPNSS8rWR0anlLIFEO/mYKbBE=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOZpMhM7PLPISw5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFKWfa+P63V1pb39jcKm9Xdnb39g+qh0dtnVhFaIskPFHdCGvKmaQtwwyn3VRRLCJOO9HkLvc7T1RplshHM01pKPBIspgRbHKpr60YVGt+3Z8DrZKgIDUo0BxUv/rDhFhBpSEca90L/NSEGVaGEU5nlb7VNMVkgke056jEguowm986Q2dOGaI4Ua6kQXP190SGhdZTEblOgc1YL3u5+J/Xsya+CTMmU2uoJItFseXIJCh/HA2ZosTwqSOYKOZuRWSMFSbGxVNxIQTLL6+S9kU9uKpfPlzWGrdFHGU4gVM4hwCuoQH30IQWEBjDM7zCmye8F+/d+1i0lrxi5hj+wPv8ATTZjlw=</latexit>X

Traditional

Amplitudes
constructed 
from analytic 
properties &
symmetries

Modern on-shell techniques allow us to
calculate scattering amplitudes efficiently

Model w/ 
spectrum of 
particles,
symmetries 

Modern On-shell

Can also explore the space of Quantum Field 
Theories through the knowledge of possible 
scattering processes given physical states 
and symmetries

Practical applications

Gain insights into the fundamental 
properties of quantum field theories, 
effective field theories



Effective Field Theory (EFT)
EFT Principle 1 
To given order in the derivative-expansion, include all higher-derivative gauge-invariant 
local operators permitted by the symmetries. 

On-shell amplitudes methods are VERY efficient for such questions. 

Lagrangian formulation:  How many gauge-invariant local operators are there subject to 
1) integration-by-parts     and 2) the EOM    and    3) field redefinitions   ?

On-shell local operators in 1-1 correspondence on-shell matrix elements

Amplitudes formulation:   How many independent on-shell matrix elements are 
there modulo momentum conservation and Bose/Fermi symmetry of identical states?
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@22�4

Abelian => Bose symmetry => symmetric degree k polynomials in s,t,u indep. under  to s+t+u=0 

Such polynomials are of the form 
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(stu)n1(s2 + t2 + u2)n2

So, count of indep. operators is number of ways to write  
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k = 3n1 + 2n2

Example k=11 n1 odd -> n1 =1 or 3     =>     there are 2 such indep. operators.

So:    Counting easy. Direct construction of local matrix elements easy. Basis changes easy. 

1
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<latexit sha1_base64="s0HM31GOHMsA7lZjPqhHLggTyNE=">AAACCXicbZDLSsNAFIYnXmu9VV26GSxCRShJKeqy6MZlBXuBNi2T6aQdOpmEmROhhG7d+CpuXCji1jdw59s4TbPQ1h8OfPznHGbO70WCa7Dtb2tldW19YzO3ld/e2d3bLxwcNnUYK8oaNBShantEM8ElawAHwdqRYiTwBGt545tZv/XAlOahvIdJxNyADCX3OSVgrH4BlzTEZ71E9p2p4V7lHEzFvUrqVaa4XyjaZTsVXgYngyLKVO8XvrqDkMYBk0AF0brj2BG4CVHAqWDTfDfWLCJ0TIasY1CSgGk3SS+Z4lPjDLAfKlMScOr+3khIoPUk8MxkQGCkF3sz879eJwb/yk24jGJgks4f8mOBIcSzWPCAK0ZBTAwQqrj5K6YjoggFE17ehOAsnrwMzUrZuShX76rF2nUWRw4doxNUQg66RDV0i+qogSh6RM/oFb1ZT9aL9W59zEdXrGznCP2R9fkDYzyYPQ==</latexit>

(stu)n1(s2 + t2 + u2)n2

So, count of indep. operators is number of ways to write  
<latexit sha1_base64="js2cyqkx9gK6r6oVFbypxtTizZA=">AAAB+HicbVBNS8NAEJ34WetHox69LBZBEEpSi3oRil48VrAf0Iaw2W7apZtN2N0INfSXePGgiFd/ijf/jds2B219MPB4b4aZeUHCmdKO822trK6tb2wWtorbO7t7JXv/oKXiVBLaJDGPZSfAinImaFMzzWknkRRHAaftYHQ79duPVCoWiwc9TqgX4YFgISNYG8m3SyN0jc6F76IzVBV+1bfLTsWZAS0TNydlyNHw7a9ePyZpRIUmHCvVdZ1EexmWmhFOJ8VeqmiCyQgPaNdQgSOqvGx2+ASdGKWPwliaEhrN1N8TGY6UGkeB6YywHqpFbyr+53VTHV55GRNJqqkg80VhypGO0TQF1GeSEs3HhmAimbkVkSGWmGiTVdGE4C6+vExa1Yp7Uand18r1mzyOAhzBMZyCC5dQhztoQBMIpPAMr/BmPVkv1rv1MW9dsfKZQ/gD6/MHaL+Q/w==</latexit>

k = 3n1 + 2n2

Example k=11 n1 odd -> n1 =1 or 3     =>     there are 2 such indep. operators.

1
<latexit sha1_base64="e1vG+wyBBCmfphqK2zhpN8Dbl1g=">AAAB/XicbVDLSsNAFL3xWesrPnZuBovgqiSlqMuiG5cV7APatEymk3boJBlmJkINxV9x40IRt/6HO//GSZuFth64cDjn3pl7jy84U9pxvq2V1bX1jc3CVnF7Z3dv3z44bKo4kYQ2SMxj2faxopxFtKGZ5rQtJMWhz2nLH99kfuuBSsXi6F5PBPVCPIxYwAjWRurbx12BpWaY99LKeIq6YsR61b5dcsrODGiZuDkpQY563/7qDmKShDTShGOlOq4jtJdmLxNOp8VuoqjAZIyHtGNohEOqvHS2/RSdGWWAgliaijSaqb8nUhwqNQl90xliPVKLXib+53USHVx5KYtEomlE5h8FCUc6RlkUaMAkJZpPDMFEMrMrIiMsMdEmsKIJwV08eZk0K2X3oly9q5Zq13kcBTiBUzgHFy6hBrdQhwYQeIRneIU368l6sd6tj3nripXPHMEfWJ8/JEOVBw==</latexit>

@2k�4

Same principles (and more machinery) for MASSIVE particles. 

Spinor-helicity formalism makes this very efficient:  

<latexit sha1_base64="BptiTh4WcPgCbmcb4uVXSprhqEQ=">AAACInicbVDLSgMxFM34rPVVdekmWARBLDNSfOyKblxWsA/o1HInTdvQJDMkGaGUfosbf8WNC0VdCX6MmekstPVAkpNz7iW5J4g408Z1v5yFxaXlldXcWn59Y3Nru7CzW9dhrAitkZCHqhmAppxJWjPMcNqMFAURcNoIhteJ33igSrNQ3plRRNsC+pL1GAFjpU7h0ucg+5xiP9Ls/nh6nGC/D0JAcp8Sq0QDlm0q7egUim7JTYHniZeRIspQ7RQ+/G5IYkGlIRy0bnluZNpjUIYRTid5P9Y0AjKEPm1ZKkFQ3R6nI07woVW6uBcqu6TBqfq7YwxC65EIbKUAM9CzXiL+57Vi07toj5mMYkMlmT7Uizk2IU7ywl2mKDF8ZAkQxexfMRmAAmJsqnkbgjc78jypn5a8s1L5tlysXGVx5NA+OkBHyEPnqIJuUBXVEEGP6Bm9ojfnyXlx3p3PaemCk/XsoT9wvn8AO8ei4g==</latexit>

h + ��+����i
massless

k   =    1,        3,         5,…
dim  = 10,       12,      14,…

# operators  =    2,       21,     114,… 
Comp time        = 0.1s,  1.6s,  5min,…

<latexit sha1_base64="comtsHJHSyACyu87jwIIgVg3o0Q=">AAACBXicbVDLSgMxFM34rPU16lIXwSK4KjOlqMuiIi4r2Ad0piWTZtrQTCYkGaEM3bjxV9y4UMSt/+DOvzGdzkJbD1zu4Zx7Se4JBKNKO863tbS8srq2Xtgobm5t7+zae/tNFScSkwaOWSzbAVKEUU4ammpG2kISFAWMtILR1dRvPRCpaMzv9VgQP0IDTkOKkTZSzz667o6gFyDpCUXhTbcCPTGkWVO0Z5ecspMBLhI3JyWQo96zv7x+jJOIcI0ZUqrjOkL7KZKaYkYmRS9RRCA8QgPSMZSjiCg/za6YwBOj9GEYS1Ncw0z9vZGiSKlxFJjJCOmhmvem4n9eJ9HhhZ9SLhJNOJ49FCYM6hhOI4F9KgnWbGwIwpKav0I8RBJhbYIrmhDc+ZMXSbNSds/K1btqqXaZx1EAh+AYnAIXnIMauAV10AAYPIJn8ArerCfrxXq3PmajS1a+cwD+wPr8AWJHlz0=</latexit>

Dk ̄F 2�2 2

So:    Counting easy. Direct construction of local matrix elements easy. Basis changes easy. 



Application in SMEFT

Example
3- and 4-pt SMEFT operators systematically 
characterized by 

Arkani-Hamed, Huang, and Huang (2017)

Aoude, Durieux, Kitahara, Machado, Shadmi, Weiss (2018-21) 

using the massive spinor helicity formalism of 

Many other applications of these ideas in formal 
theory, such as for local counterterms for UV 
divergences in perturbative supergravity, higher-
derivative corrections to chiral perturbation 
theory, Galileons, finite local counterterms in 
Born-Infeld, monopoles, dark matter…

Further expanded technique and analysis by Accettulli Huber + De Angelis (2022) 
and De Angelis (2022).

Some comparisons in certain sectors so far with Lagrangian approaches, 
for example w/ Henning Lu Melia Murayama. Plus in follow-up papers.

Freedman, Kiermaier, Elvang; Beisert, Morales; Mitchell; 
Hadjiantonis, Jones, Paranjape; Bern, Parra-Martinez, 
Roiban; Csaki, Hong, Shirman, Telem, Terning; 
Falkowski, Isabella, Machado;...



Anomalous dimension mixing matrix

Surprising 1-loop non-renormalization results for SMEFT dim 6 operators.
Alonso, Jenkins, Manohar (2014) 
(Grojean, Jenkins, Manohar, Trott; Elias-Miro, Espinosa, Masso, Pomarol (2013))

Explained by Cheung and C-H Shen (2015) using on-shell amplitudes methods to characterize the possible 
local operators at dim 5 and 6.

Using on-shell unitarity methods to get anomalous dimensions and beta functions from Caron-Huot and 
Wilhelm (2016), new non-renormalization theorems derived for dim 5 through 7 SMEFT operators by
Bern, Parra-Martinez, and Sawyer (2019). 2-loop SMEFT anomalous dim’s Bern, Parra-Martinez, 
and Sawyer (2020). Mixing matrix at Dim 8 in Accettulli Huber + De Angelis (2022).

Under RG, operators can mix.
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Using on-shell methods, we present a new perturbative non-renormalization theorem for operator
mixing in massless four-dimensional quantum field theories. By examining how unitarity cuts of
form factors encode anomalous dimensions we show that longer operators are often restricted from
renormalizing shorter operators at the first order where there exist Feynman diagrams. The theorem
applies quite generally and depends only on the field content of the operators involved. We apply
our theorem to operators of dimension five through seven in the Standard Model Effective Field
Theory, including examples of nontrivial zeros in the anomalous-dimension matrix at one through
four loops. The zeros at two and higher loops go beyond those previously explained using helicity
selection rules. We also include explicit sample calculations at two loops.

Introduction: A key challenge in particle physics is to
identify physics beyond the Standard Model. Because
current experimental data at colliders is well described by
the Standard Model, it is unclear which theoretical direc-
tion will ultimately prove to be the one chosen by Nature.
It is therefore important to quantify new physics beyond
the Standard Model in a systematic, model-independent
manner. The theoretical framework for doing so is via
effective field theories that extend the Standard Model
Lagrangian by adding higher-dimension operators [1, 2]:

∆L =
∑

i

ciOi , (1)

with coefficients ci suppressed by powers of a high-energy
scale Λ dictated by the dimension of Oi. The result-
ing theory, known as the Standard Model Effective Field
Theory (SMEFT), is reviewed in Ref. [3].
As for all quantum field theories, renormalization

induces mixing of these operators. This can be
parametrized by the renormalization group equation,

16π2 ∂ci
∂ logµ

= γUV
ij cj , (2)

where γUV
ij is the anomalous-dimension matrix and µ is

the renormalization scale. Usually, γUV
ij is calculated per-

turbatively in the marginal couplings of the Standard
Model Lagrangian, which we will denote collectively as
g. The complete one-loop anomalous-dimension matrix
for operators up to dimension six has been computed in
Refs. [4, 5]. These calculations reveal a number of van-
ishing entries related to supersymmetry [6], which seem
surprising at first because there are valid diagrams that
can be written down. These zeros have been elegantly
explained [7] using tree-level helicity selection rules [8],
which set certain classes of tree-level amplitudes to zero.
The tree-level vanishings imply through unitarity that

certain logarithms and their associated anomalous di-
mensions are not present. Although these selection rules
are reminiscent of supersymmetric ones, they hold for
generic massless quantum field theories in four dimen-
sions.
Might it be possible that beyond one loop there are

new nontrivial zeros? At first sight, this seems rather
unlikely because the helicity selection rules fail to hold
at loop level. In this Letter, we show that, contrary to
expectations, there are, in fact, additional nontrivial ze-
ros in the higher-loop anomalous-dimension matrix. As
in Ref. [7], our only assumption is that the theory does
not contain any relevant couplings (e.g. masses). To state
the new nonrenormalization theorem we define the length
of an operator, l(O), as the number of fundamental field
insertions in O. Then the statement of theorem is as
follows:

Consider operators Os and Ol such that l(Ol) > l(Os).
Ol can renormalize Os at L loops only if L > l(Ol) −
l(Os).

At fixed loop order, sufficiently long operators cannot
renormalize short operators because there would be too
many legs to form a diagram with the right structure.
Such zeros in the anomalous-dimension matrix are triv-
ial. As written above the theorem applies non-trivially
at (l(Ol)− l(Os))-loops, i.e., the first loop order at which
there could be renormalization because diagrams exist.
However, in a general theory with multiple types of fields,
the first renormalization can be delayed even further, de-
pending on the precise field content of the two operators.
We encapsulate this into the more general rule:

If at any given loop order, the only diagrams for a ma-
trix element with the external particle content of Os

but an insertion of Ol involve scaleless bubble integrals,
there is no renormalization of Os by Ol.
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ij is calculated per-
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Model Lagrangian, which we will denote collectively as
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ishing entries related to supersymmetry [6], which seem
surprising at first because there are valid diagrams that
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The tree-level vanishings imply through unitarity that
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mensions are not present. Although these selection rules
are reminiscent of supersymmetric ones, they hold for
generic massless quantum field theories in four dimen-
sions.
Might it be possible that beyond one loop there are

new nontrivial zeros? At first sight, this seems rather
unlikely because the helicity selection rules fail to hold
at loop level. In this Letter, we show that, contrary to
expectations, there are, in fact, additional nontrivial ze-
ros in the higher-loop anomalous-dimension matrix. As
in Ref. [7], our only assumption is that the theory does
not contain any relevant couplings (e.g. masses). To state
the new nonrenormalization theorem we define the length
of an operator, l(O), as the number of fundamental field
insertions in O. Then the statement of theorem is as
follows:

Consider operators Os and Ol such that l(Ol) > l(Os).
Ol can renormalize Os at L loops only if L > l(Ol) −
l(Os).

At fixed loop order, sufficiently long operators cannot
renormalize short operators because there would be too
many legs to form a diagram with the right structure.
Such zeros in the anomalous-dimension matrix are triv-
ial. As written above the theorem applies non-trivially
at (l(Ol)− l(Os))-loops, i.e., the first loop order at which
there could be renormalization because diagrams exist.
However, in a general theory with multiple types of fields,
the first renormalization can be delayed even further, de-
pending on the precise field content of the two operators.
We encapsulate this into the more general rule:

If at any given loop order, the only diagrams for a ma-
trix element with the external particle content of Os
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Theory, including examples of nontrivial zeros in the anomalous-dimension matrix at one through
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Introduction: A key challenge in particle physics is to
identify physics beyond the Standard Model. Because
current experimental data at colliders is well described by
the Standard Model, it is unclear which theoretical direc-
tion will ultimately prove to be the one chosen by Nature.
It is therefore important to quantify new physics beyond
the Standard Model in a systematic, model-independent
manner. The theoretical framework for doing so is via
effective field theories that extend the Standard Model
Lagrangian by adding higher-dimension operators [1, 2]:

∆L =
∑

i

ciOi , (1)

with coefficients ci suppressed by powers of a high-energy
scale Λ dictated by the dimension of Oi. The result-
ing theory, known as the Standard Model Effective Field
Theory (SMEFT), is reviewed in Ref. [3].
As for all quantum field theories, renormalization

induces mixing of these operators. This can be
parametrized by the renormalization group equation,

16π2 ∂ci
∂ logµ

= γUV
ij cj , (2)

where γUV
ij is the anomalous-dimension matrix and µ is

the renormalization scale. Usually, γUV
ij is calculated per-

turbatively in the marginal couplings of the Standard
Model Lagrangian, which we will denote collectively as
g. The complete one-loop anomalous-dimension matrix
for operators up to dimension six has been computed in
Refs. [4, 5]. These calculations reveal a number of van-
ishing entries related to supersymmetry [6], which seem
surprising at first because there are valid diagrams that
can be written down. These zeros have been elegantly
explained [7] using tree-level helicity selection rules [8],
which set certain classes of tree-level amplitudes to zero.
The tree-level vanishings imply through unitarity that

certain logarithms and their associated anomalous di-
mensions are not present. Although these selection rules
are reminiscent of supersymmetric ones, they hold for
generic massless quantum field theories in four dimen-
sions.
Might it be possible that beyond one loop there are

new nontrivial zeros? At first sight, this seems rather
unlikely because the helicity selection rules fail to hold
at loop level. In this Letter, we show that, contrary to
expectations, there are, in fact, additional nontrivial ze-
ros in the higher-loop anomalous-dimension matrix. As
in Ref. [7], our only assumption is that the theory does
not contain any relevant couplings (e.g. masses). To state
the new nonrenormalization theorem we define the length
of an operator, l(O), as the number of fundamental field
insertions in O. Then the statement of theorem is as
follows:

Consider operators Os and Ol such that l(Ol) > l(Os).
Ol can renormalize Os at L loops only if L > l(Ol) −
l(Os).

At fixed loop order, sufficiently long operators cannot
renormalize short operators because there would be too
many legs to form a diagram with the right structure.
Such zeros in the anomalous-dimension matrix are triv-
ial. As written above the theorem applies non-trivially
at (l(Ol)− l(Os))-loops, i.e., the first loop order at which
there could be renormalization because diagrams exist.
However, in a general theory with multiple types of fields,
the first renormalization can be delayed even further, de-
pending on the precise field content of the two operators.
We encapsulate this into the more general rule:

If at any given loop order, the only diagrams for a ma-
trix element with the external particle content of Os

but an insertion of Ol involve scaleless bubble integrals,
there is no renormalization of Os by Ol.

Under RG, operators mix. 

Important for interpretation of experimental results
to understand how.



Pushing the Loop Limit

Front-line particle physics calls for high-precision theory.

Need to push beyond NLO => need to push techniques for calculating higher-loops.    

It can be very fruitful to use theories with a high degree of symmetry as ``a lab” for 
developing and testing new calculational tools. 

Such a theory is N=4 super Yang-Mills theory. 
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massless scalars and fermions, SU(4) global symmetry, Yangian symmetry in planar limit… 



Pushing the Loop Limit

Front-line particle physics calls for high-precision theory.

Need to push beyond NLO => need to push techniques for calculating higher-loops.    

At the origin of moduli space (all scalars have vanishing VEVs). 

Can give scalars VEV (Coulomb branch) while preserving supersymmetry but reducing 
other symmetries and generate masses. A step closer to SM – but still far. Yet, still very
useful. 

It can be very fruitful to use theories with a high degree of symmetry as ``a lab” for 
developing and testing new calculational tools. 

Such a theory is N=4 super Yang-Mills theory. 

It is in many ways very different from the Standard Model, e.g. conformal, multitude of 
massless scalars and fermions, SU(4) global symmetry, Yangian symmetry in planar limit… 



Example of benefits
Generalized Unitarity: idea is to use unitarity cuts to sow loop-amplitudes together from trees (and lower loop). 

Basics of Generalized Unitarity 4

describe a duality between color and kinematics, showing the transition from trees to

loops. In general, tree properties carry over straightforwardly to generalized cuts that

decompose a loop amplitude into a product of tree amplitudes. However, as the second

example illustrates it can be nontrivial to demonstrate that a given property holds for

the complete loop amplitude.

2. Basics of the unitarity method

1

2 3

4← l1

l3→

(a)

l2
l4

1

2 3

4
(b)

→←

Figure 1. The s and t channel two-particle cuts of the one-loop four-point
amplitude.

2.1. Overview

The simplest unitarity cuts to consider are the two-particle cuts. These are obtained by

putting two intermediate lines on shell, as illustrated in figure 1 for a four-point one-loop

amplitude. For example, the s channel cut in figure 1(a) is given by

Cs =
∑

states

Atree(−l1, 1, 2, l3)A
tree(−l3, 3, 4, l1) , (1)

where the sum runs over all physical states in the theory. The cuts are evaluated using

momenta that place all intermediate cut momenta on shell, l2i = m2
i , where the mi are

masses. Here we will take the theory to be massless. Cuts are usually taken as including

phase-space integrals, but for our purposes it is simpler to define them as not including

the phase-space integration.
An especially useful class of cuts are those that decompose a loop amplitude into a

sum over m tree amplitudes of form,

C =
∑

states

Atree
(1) A

tree
(2) A

tree
(3) · · ·Atree

(m) , (2)

where the sum runs over all physical states that can cross the cuts. In N = 4 super-

Yang-Mills theory, it is especially useful to consider the maximal cuts [8], (also referred
to as “leading singularities” [46]), where the maximum number of propagator lines are

placed on shell. Another useful class are single cuts where only a single internal line is

placed on shell [47]; these have played an important role in the construction of planar

integrands of N = 4 super-Yang-Mills theory via on-shell recursion [37].

Basics of Generalized Unitarity 6

forth. Each time a cut condition is released, potential contact terms which would not be

visible at earlier steps are captured. The process terminates when the only remaining

potential contact terms exceed power counting requirements of the theory (or integrate

to zero in dimensional regularization). For the case of maximal supersymmetry—

especially in the planar case—there are a large variety of additional tricks and techniques

for obtaining contributions efficiently [8, 46, 11, 37, 38]. Many of these are discussed
further by Carrasco and Johansson in another chapter of this review [14].
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←
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→
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Figure 3. The double-box three-particle cuts. The cut contributions (a) and (b)
are two distinct cut contributions of the same horizontal double-box integral.
The vertical double box has only a single contribution to the three-particle cut.
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Figure 4. An example showing how cuts are combined to obtain contributions
with fewer cut conditions. In this equation the momentum labels of the different
cut contributions need to be aligned, before being combined. On the right hand
side, the only remaining cut conditions

Given a spanning set of unitarity cuts, the task is to then find an expression for
the integrand of the amplitude with the correct cuts in all channels. This can be done

either in a forward or reverse direction. In the forward direction the different cuts are

merged into integrands with no cut conditions using a merging procedure described in

ref. [6]. In the reverse direction we first construct an ansatz for the amplitude containing

unknown parameters which are then determined by taking generalized cuts of the ansatz

and comparing to the cuts of the amplitude. The reverse direction is usually preferred
because we can expose desired properties, simply by imposing them on the ansatz and

then checking if its unitarity cuts are correct.

2.2. Cut merging procedure

To illustrate the forward way of proceeding, consider a two-loop four-point amplitude.

In particular, consider those contributions which contain the propagators of the double-

from [Bern & Huang review (2011)]

Develop and test in N=4 SYM. Push loop order in N=4 SYM & perturbative N=8 supergravity.

Apply in pheno. 

e.g. from `early days’ W + 3 jets at NLO 

to very recent leading edge assembly of tools to get NNLO for four partons and a W boson in QCD 

[Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, Maitre (2008)]

e.g. [K. Ellis, Giele, Kunszt, Melnikov, Zanderighi (2008)]

[Abreu, Febres Cordero, Ita, Klinkert, Page, Sotnikov (2022)]

See Febres Cordero’s talk

Bern, Dixon, Kosower,…



How are the loop-techniques pushed in (planar) N=4 SYM?

Figure slightly modified from  Fig 1 in the 
white paper by Arkani-Hamed, Dixon, McLeod, 
Spradlin, Trnka, and Volovich [2207.10636] 

Figure 1: The three approaches that should be unified to solve N = 4 super-Yang-Mills

theory in the planar limit: weak coupling via perturbation theory, strong coupling via minimal

surfaces, and near-collinear kinematics via the pentagon operator product expansion at any

coupling.

surfaces in Anti-de Sitter space [4, 5]; and a pentagon operator product expansion (POPE)

approach exploits the two-dimensional integrability of a dual string picture at finite coupling

in various kinematic limits [6–8]. These formulations are all mutually consistent but make

use of di↵erent physics, are formulated in mathematically distinct ways, and make di↵erent

properties of amplitudes manifest. A major task for the future will be to find a single unifying

description of amplitudes in this theory that properly matches each of these formulations

in the appropriate limit. Mathematically, this question can be framed as a search for the

functions that are able to express the markedly varied behavior exhibited by amplitudes,

from weak to strong coupling and in arbitrary kinematics.

Many interesting facets of these questions deserve attention in the coming years. They

include: How do gluonic and stringy descriptions morph into each other as the coupling

and kinematics are varied? What kind of singularities show up, and what is the physics

associated to them? How do holographic dualities, string theory, and even space-time itself,

emerge dynamically from planar gauge theories? Solving scattering in planar N=4 SYM

theory will provide a quantitative test for our physical and mathematical expectations, and

will lead to an improved intuition that can be applied to more general and realistic quantum
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AdS/CFT

Integrability

Generalized unitarity, Amplituhedron, Amplitude bootstrap 

Solve planar N=4 SYM.
All L-loop n-point
planar N=4 SYM

Strong coupling

Weak coupling

All coupling



Amplitude bootstrap
Loop amplitudes are complicated – but not arbitrary – combinations of special mathematical 
functions whose arguments are functions of particular kinematic variables. 

Transcendental functions: Logarithms, di-logarithms, polylogarithms… 
with increasingly intricate branch cut structure.

There are a long list of properties the combination of special functions that make up an
amplitude must satisfy. That means only certain combinations can occur. The more of 
these constraints are imposed, the fewer free parameters.

N=4 SYM UV finite and IR divergences well-understood (BDS ansatz). 

This leaves an undetermined ``remainder function”. 

See white paper 2207.10636 



Amplitude bootstrap for planar N=4 SYM
From 2207.10636 

Constraint L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1. Hhex 6 27 105 372 1214 3692?

2. Symmetry 2 7 22 66 197 567

3. Final-entry 1 4 11 30 85 236

4. Collinear 0 0 0⇤ 0⇤ 1⇤3 6⇤2

5. LL MRK 0 0 0 0 0⇤ 1⇤2

6. NLL MRK 0 0 0 0 0⇤ 1⇤

7. NNLL MRK 0 0 0 0 0 1

8. N3LL MRK 0 0 0 0 0 1

9. Full MRK 0 0 0 0 0 1

10. T 1 OPE 0 0 0 0 0 1

11. T 2 OPE 0 0 0 0 0 0

Table 1: The number of free parameters that remain in the BDS-like normalized ansätze for

the MHV six-particle amplitude after each constraint is applied. The initial ansatz is formed

out of a general linear combination of the functions in the Hhex space, which includes all

polylogarithms that involve just the letters in S6, and that satisfy conditions (ii), (iv), and

(v). The superscripts “⇤” (or “⇤n”) denote an additional ambiguity (or n ambiguities) that

arises due to further ambiguities in the cosmic normalization constant ⇢. The “?” indicates

an ambiguity about the number of weight 12 odd functions that are “dropouts”, namely that

are allowed at symbol level but not function level. The numbers in this table were taken

from [110], where further details can be found.

or more particles. Such letters explicitly appear in the three-loop eight-point MHV amplitude,

which was recently computed with the help of the Q̄ equation [215]. This fact makes bootstrap

computations harder to pursue for more than seven particles, since there doesn’t yet exist

a reliable method for predicting the symbol letters that will appear in these amplitudes

(although much work has been devoted to this question; see for instance [40–42, 60, 62, 64–

67, 69–81]). Further data on this question can be gathered by computing three-loop MHV

amplitudes at higher points, which should also be possible with the help of the Q̄ equation,

using input from our knowledge of this theory’s two-loop NMHV amplitudes [216, 217].

At higher points, amplitudes and form factors in N = 4 SYM theory are expected

to involve functions beyond multiple polylogarithms, even in the planar limit. While it is

expected that bootstrap approaches can also be applied to amplitudes that involve these more

general types of functions—as indeed, these quantities are expected to exhibit many of the

same algebraic and analytic features as the amplitudes that have already been bootstrapped—

more technology for dealing with these functions is needed to make this approach feasible.
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Planar 6-point MHV at L-loops: 

Space of relevant 
polylogarithms

For table that includes both MHV and NMHV counting, 
see 1903.10890 (Caron-Hout, Dixon, Dulat, von Hippel, McLeod, Papathanasiou)]  

Only certain letters at 
the end of the symbol

MRK = Multi-Regge
Kinematics

LL  = Leading Logarithms



Future directions for N=4 SYM
On-going research on understanding “letter alphabet” needed; pushing 
loop-order, applying to form factors, and much much more

e.g. up to and incl. 8-loop(!!) results for 3-pt stress-tensor form factor

[Dixon, Gurdogan, McLeod, Wilhelm (2022)]

From abstract:

By the principle of maximal transcendentality, our results are expected to give 
the highest weight part of the gg → Hg and H → ggg amplitudes in the 
heavy-top limit of QCD through eight loops



Future should bring cross-fertilization between formal theory advances and 
pheno applications. Several people work in both areas.

Bern, Dixon, Kosower, Mistlberger, Duhr,… 

Excitingly, N=4 SYM amplitudes technology has also recently found its way into 
gravitational wave physics: Zvi Bern’s talk and Enrico Hermann’s talks.

Future directions for N=4 SYM
Ongoing research on understanding “letter alphabet” needed; pushing 
loop-order, applying to form factors, and much much more

This develops technical tools for loop-calculations but at the same time 
also offers invaluable insight into the intriguing mathematical structure of 
the observables of QFT. Very fruitful connections to mathematics (cluster 
algebra, Grassmannians, positive geometry…)



EFT principle 2
The higher-derivative operators appear with generic coefficients naturally 
expected to be of order ~1 in units of the scale of the UV physics. 

… so if these coefficients are not ~1  (say  <<1 or >>1 or even 0),
we have some explaining to do.

Study UV-completable models have constraints on the Wilson coefficients. 

Back to EFTs 



Examples
Exploring those bounds are the subject of the S-matrix bootstrap / EFT-hedron / 
weak gravity conjecture via amplitudes

Adams, Arkani-Hamed, Dubovski, Nicolis, Rattazzi; Arkani-Hamed, T-C Huang, 
Y-t Huang; Vafa, Ooguri; Arkani-Hamed, Y-t Huang , J-Y Liu, Cheung, Remmen, 
Jones, McPeak, Caron-Huot, …

Bottom-up bootstrap of string theory via amplitudes: 
Arkani-Hamed, Y-t Huang, Vieira, Penedones, Guerrieri, Komargodski, Sever, 
Zhiboedov, Alonso, Rodina, Eberhardt, Mizera, Liu, Wang, Van Duong, Mazáč, 
Rastelli, Simmons-Duffin, Bellazzini, Miro, Rattazzi, Riembau, Riva, Tolley, 
Wang, S-Y Zhou, Parra-Martinez,…

Related: Snowmass white paper on bootstrapping string theory
Gopakumar, Perlmutter, Pufu, Yin



Proposal:      EFT-hedron +  String Monodromy =>  the open string 
Huang, J-Y Liu, Rodina, Wang (2008) 

Evidence: Wilson coefficients of YM theory with 
higher-derivative operators bootstrapped at  4-pt with EFT-hedron + 
monodromy => open string.

Forthcoming: analysis of replacing String Monodromy with N=4 supersymmetry.
Berman, Elvang, Herderschee (arXiv:2022….) 

(see also Bern’s talk for other examples)

Examples



Amplitudes and EFTs

Soft theorems in EFTs and bootstrapping exceptional EFTs

Celestial amplitudes & EFTs

Cheung, Trnka, Elvang, Jones, Naculich, Hadjiantonis, Paranjape, Helset, Parra-Martinez, Z Yin,C-H Shen. 
I. Low, Kampf, Novotný, …

Arkani-Hamed, Pate, Raclariu, Strominger

Double-copy in EFTs
BCJ-based  Carrasco, Rodina, Zekioglu
KLT bootstrap HH Chi, Elvang, Herderschee, Jones, Paranjape
Connecting (4pt) Durieux, Grojean, Bonnefoy, Machado, Roosmale Nepveu

Double-copy white paper 
[Adamo, Carrasco, Carillo-Gonzales, Chiodaroli, Elvang, Johansson, O’Connel, Roiban Schlotterer (2022)] 



KLT double-copy bootstrap 
Chi, Elvang, Herderschee, Jones, Paranjape (2021) 

Proposed that an underlying structure, the KLT algebra, is key for generalizations of 
the double-copy, not only in EFT context but also more generally. 

(1.6) as
L = L ⌦ 1 , R = 1⌦ R , 1 = 1⌦ 1 . (1.7)

If (1.6) is multiplied from both the left and right with the inverse of (n � 3)! ⇥ (n � 3)!

submatrices of BAS amplitudes mn, one finds that the KLT kernel Sn it itself the inverse
of a (n� 3)!⇥ (n� 3)! submatrix of BAS amplitudes; loosely written we have

Sn =
�
mn

��1
. (1.8)

We make this relation more precise in Section 2.1. For the 4-point case, this is particularly
simple though: using (1.4) we have for example

S4[1234|1234] =
�
m4[1234|1234]

��1
= �

su

tg
, S4[1234|1243] =

�
m4[1243|1234]

��1
= �

s

g
.

(1.9)
The latter is the kernel given below (1.2).
Equation (1.5) can be viewed as a set of linear relations among the single-color amplitudes
An. These relations combine the well-known Kleiss-Kuijf (KK) [5] and fundamental BCJ
identities [6]; the latter arise in the color-kinematics duality version of the double-copy
pioneered by Bern, Carrasco, and Johansson [6]. From the color-kinematic point of view,
the KK and BCJ relations are necessary conditions one must impose on the tree amplitudes
of a theory in order to be able to use it in the double-copy and they reduce the number of
independent color-ordered amplitudes from (n�1)! to (n�3)!. At 4-point, these 5 KKBCJ
conditions are comprised of

Trace-reversal: A4[1432] = A4[1234] , A4[1342] = A4[1243] , A4[1423] = A4[1324]

(1.10)
and

U(1)-decoupling: A4[1234] +A4[1243] +A4[1423] = 0 , (1.11)

BCJ: A4[1234]�
t

u
A4[1243] = 0 . (1.12)

If they do not hold, the result AL⌦R
n of attempting the double-copy may not be a well-defined

amplitude of any local theory.
The KKBCJ conditions (1.5) allow some models to be double-copied but not others. For
example, the amplitudes of a model with an adjoint scalar ' and a fully symmetry inter-
action tr

�
'{','}

�
does not obey KKBCJ. Similarly, it was shown in [7] that adding an

operator trF 3 to YM theory does satisfy KKBCJ but adding trF 4 violates it.
Perhaps the reader is concerned that YM with an trF 4 cannot be double-copied. After all,
the low-energy expansion (i.e. ↵0-expansion) of the open string theory gluon amplitude does
indeed produce an operator of the form trF 4. And the KLT formula was originally derived
as a map from open string amplitudes to closed string amplitudes [1]. These statements
appear to be in conflict with trF 4 not passing the KKBCJ constraints. The resolution is
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KKBCJ / monodromy relations
KLT Bootstrap 
Equation

Says that regarded as a map between field theories (FT): FT x FT -> FT 
the double copy has an identity element “1” with the defining relations

Identity uniquely linked with product rule =>  generalize the double-copy product rule.
In EFT, applying the bootstrap for 4- and 5-point amplitudes allows a double-copy kernel 
which is much more general than that of string theory  (so what makes string theory special?).

A. Sh-K. Chen, Elvang, to appear; see also my Amplitudes 2022 talk

However, new things begin to happen at 6-points!!



KLT double copy bootstrap 

• Insights into the fundamental inner workings of the 
double-copy as a map on the landscape of QFTs.

• Applications relevant for EFTs.
• Narrowing in on string theory from a bottom-up EFT 

bootstrap approach



A powerful approach to explore fundamental physics and structure of QFT

Very active and growing field of research, attracting a lot of young researchers

Impact both on the front of

the pursuit of the mathematical truth and beauty  

& 

experimental + pheno particle physics and description of Nature 

Those are the pillars of our field: the interplay between 

Advancing our understanding of Quantum Field Theory on the formal side

And direct applications to particle physics, beyond-LO calculation, SMEFT, …

Modern Amplitudes 


