Amplitudes and Precision at Hadron Colliders

Fernando Febres Cordero
Department of Physics, Florida State University

Snowmass CSS, University of Washington, Seattle, 7/22/2022
Based on the Snowmass White Paper [arXiv:2204.04200]
With Andreas von Manteuffel and Tobias Neumann

References From the Snowmass Process

- Snowmass reports
- Energy Frontier: Narain, Reina, Tricoli, (\& contributors)
- EF05-07 - QCD Report: Begel, Höche, Lin, Mukherjee, Nadolsky, Royon, Schmitt, (\& contributors)
- TF04 - Scattering Amplitudes and their Applications: Bern, Trnka, (\& contributors)
- TF06 - Theory Techniques for Precision Physics : Boughezal, Ligeti, (\& contributors)
- TF07 - Theory of Collider Phenomena: Maltoni, Su, Thaler, (\& contributors)
- Snowmass white papers
- Computational challenges for multi-loop collider phenomenology: FFC, von Manteuffel, Neumann [arXiv:2204.04200]
- The Path forward to $\mathrm{N}^{3} \mathrm{LO}$: Caola, Chen, Duhr, Liu, Mistlberger, Petriello, Vita, Weinzierl [arXiv:2203.06730]
- See also: Special funcs [arXiv:2203.07088], Coll factorization [arXiv:2207.06507]

And references therein!

References From the Snowmass Process

- Snowmass reports
- Energy Frontier: Narain, Reina, Tricoli, (\& contributors)
- EF05-07 - QCD Report: Begel, Höche, Lin, Mukherjee, Nadolsky, Royon, Schmitt, (\& contributors)
- TF04 - Scattering Amplitudes and their Applications: Bern, Trnka, (\& contributors)
- TF06 - Theory Techniques for Precision Physics : Boughezal, Ligeti, (\& contributors)
- TF07 - Theory of Collider Phenomena: Maltoni, Su, Thaler, (\& contributors)
- Snowmass white papers
- Computational challenges for multi-loop collider phenomenology: FFC, von Manteuffel, Neumann [arXiv:2204.04200]
- The Path forward to $\mathrm{N}^{3} \mathrm{LO}$: Caola, Chen, Duhr, Liu, Mistlberger, Petriello, Vita, Weinzierl [arXiv:2203.06730]
- See also: Special funcs [arXiv:2203.07088], Coll factorization [arXiv:2207.06507]

And references therein!

Apologies in advance for not covering all the impressive related activity!

Outline

Introduction

State-of-the-art and future needs

A touch on techniques

Our survey \& outlook

The attobarn Era

20-fold increase in data sets at the LHC experiments in the next decades

Reaching few-percent uncertainties in cross sections for processes with 3 (or more) objects in the final state

Snowmass Projections for Higgs Couplings

HL-LHC can achieve \mathcal{O} (few \%) errors for Higgs coupling measurements

Critical input from multi-scale theory predictions, typically in processes involving 3 (or more) FS objects

Hadron Collider Event Simulation

- Factorization
- Hard scattering
- Parton evolution
- Simulation underlying event and hadronization
- Particle decays and radiation

$$
\sigma_{h_{1} h_{2} \rightarrow H}=\sum_{a, b} \int d x_{a} d x_{b} f_{a / h_{1}}\left(x_{a}, \mu_{F}\right) f_{b / h_{2}}\left(x_{b}, \mu_{F}\right) \hat{\sigma}_{a b \rightarrow H+X}\left(\mu_{F}, \mu_{R}\right)
$$

Uncertainties in Perturbative Predictions

Parametric: determination of model's parameters couplings, PDFs, masses

Perturbative truncation

$$
\hat{\sigma}_{a b \rightarrow H}=\alpha_{s}^{\kappa}\left(\sigma_{\mathrm{LO}}+\alpha_{s} \sigma_{\mathrm{NLO}}+\alpha_{s}^{2} \sigma_{\mathrm{NNLO}}+\alpha_{s}^{3} \sigma_{\mathrm{N}^{3} \mathrm{LO}}+\cdots\right)
$$

Truncation and Underlying Amplitudes

$$
\sigma_{h_{1} h_{2} \rightarrow H}=\alpha_{s}^{\kappa}\left(\sigma_{\mathrm{LO}}+\alpha_{s} \sigma_{\mathrm{NLO}}+\alpha_{s}^{2} \sigma_{\mathrm{NNLO}}+\alpha_{s}^{3} \sigma_{\mathrm{N}^{3} \mathrm{LO}}+\cdots\right)
$$

A myriad of amplitudes are required for precision calculations

NNLO Progress in Time

Slide by L. Cieri, inspired by G. Salam

N^{3} LO Progress in Time

N3LO AT THE LHC OVER TIME

Higgs Threshold Exp.
[Anastasiou, Duhr, Dulat, Herzog, BM, 15]

Slide inspired by G. Salam / L. Cieri... WDY-Fiducial [Chen,Gehrman,et al., 22] DY-Fiducial [Chen,Gehrman,et al., 22]

DY-Z [Duhr,BM, 21] DY-Rapidity [Chen,Gehrmann,Glover,et al.] Fiducial DY [Camarda,Cieri,Ferrera, 21]

(Better) Theory Uncertainties

- Principle of Maximum

IT IS TIME TO DISCUSS THEORETICAL UNCERTAINTIES

Conformality, Di Giustino, Brodsky, Wang Wu [arXiv:2002.01789]

- Probabilistic definition of the perturbative theoretical uncertainty, Bonvini [arXiv:2006.16293]
- Bayesian estimates for missing higher orders in perturbative calculations, Duhr, Huss, Mazeliauskas, Szafron [arXiv:2106.04585]

Squeezing the physics from collider data

Direct and Indirect Limits

Outline

Introduction

State-of-the-art and future needs

A touch on techniques

Our survey \& outlook

Five+ Scales at Two Loops

Integrals

5pt OM P, Papadopoulos et al. [arXiv:1511.09404]

5pt OM P (pent funcs), Gehrmann et al. [arXiv:1807.09812]

5pt 1M NP HB; Papadopoulos et al. [arXiv:1910.06275]

5pt 1M P, Abreu et al. [arXiv:2005:04195]
5pt 1M P, Canko et al. [arXiv:2009.13917]
5 pt 0 M NP (pent funcs), Chicherin et al. [arXiv:2009.07803]

5pt 1M NP HB, Abreu et al [arXiv:2107.14180]
5 pt 1 M P (pent funcs), Chicherin et al. [arXiv:2110.10111]

5pt 1M NP HB; Kardos et al. [arXiv:2201.07509]

Amplitudes (analytic)

5 gluon all-plus LC, Gehrmann et al. [arXiv:1511.05409]

5 gluon single-minus LC, Badger et al. [arXiv:1811.11699]
5 gluon LC, Abreu et al.
[arXiv:1812.04586]

5 parton LC, Abreu et al. [arXiv:1904.00945]
5 gluon all-plus, Badger et al. [arXiv:1905.03733]

2-q 3- γ LC, Abreu et al. [arXiv:2010.15834],
Chawdhry et al. [arXiv:2012.13553]
3-p 2- γ LC, Agarwal et al. [arXiv:2102.01820],
Chawdhry et al. [arXiv:2103.04319]
3 jet LC; Abreu et al. [arXiv:2102.13609]
3-p 2- γ, Agarwal et al. [arXiv:2105.04585]
2-q H 2-b LC, Badger et al. [arXiv:2107.14733]
4-p 2-I LC, Abreu et al. [arXiv:2110.07541]:
3-p γ 2-I LC, Badger et al. [arXiv:2201.04075]

Four-Point at Three loops

By now all three-loop four-parton and two-parton two-photon amplitudes have been computed

- Integrals
- 4-point massless, Henn, Mistlberger, Smirnov, Wasser [arXiv:2002.09492]
- 4-point 1-mass tennis-court, Canko, Syrrakos [arXiv:2112.14275]
- Amplitudes
- 2-quark 2- γ, Caola, von Manteuffel, Tancredi [arXiv:2011.13946]
- 4-quark, Caola, Chakraborty, Gambuti, von Manteuffel, Tancredi [arXiv:2108.00055]
- 2-gluon 2- γ, Bargiela, Caola, von Manteuffel, Tancredi [arXiv:2111.13595]
- 4-gluon, Caola, Chakraborty, Gambuti, von Manteuffel, Tancredi [arXiv:2112.11097]
- 2-quark 2-gluon, Caola, Chakraborty, Gambuti, von Manteuffel, Tancredi [arXiv:2207.03503]

Related Progress at Four+ Loops

- Four-loop form factors for $2 \rightarrow 1$ processes
- Henn, Smirnov, Smirnov, Steinhauser [arXiv:1604.03126]
- Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser [arXiv:2202.04660]
- Chakraborty, Huber, Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser [arXiv:2204.02422]
- Progress on four-loop splitting functions
- Moch, Ruijl, Ueda, Vermaseren, Vogt [arXiv:1707.08315]
- Moch, Ruijl, Ueda, Vermaseren, Vogt [arXiv:2111.15561]
- (See the recent usage in the "aN ${ }^{3}$ LO" set from the MSHT PDF set! [arXiv:2207.04739])
- Five-loop beta functions
- Herzog, Ruijl, Ueda, Vermaseren, Vogt [arXiv:1701.01404]
- Luthe, Maier, Marquard, Schroder [arXiv:1709.07718]

The Future: Immediate Needs

Summary of the Les
 Houches precision wishlist for hadron colliders.

> HTL stands for calculations in heavy top limit, VBF* stands for structure function approximation

process	known	desired
$p p \rightarrow H$	$\mathrm{N}^{3} \mathrm{LO}_{\mathrm{HTL}}, \mathrm{~N}^{2} \mathrm{LO}_{\mathrm{QCD}}^{(t)}, \mathrm{N}^{(1,1)} \mathrm{LO}_{\mathrm{QCD} \Theta \mathrm{EW}}^{(\mathrm{HTL})}$	$\mathrm{N}^{4} \mathrm{LO} \mathrm{HTLL}^{\text {(incl. }}$), $\mathrm{N}^{2} \mathrm{LO}_{\mathrm{QCD}}^{(\mathrm{c}, \mathrm{c})}$
$p p \rightarrow H+j$	$\mathrm{N}^{2} \mathrm{LO}_{\text {HTL }}, \mathrm{NLO}_{\text {QCD }}, \mathrm{N}^{(1,1)} \mathrm{LO}_{\text {QCD }} \mathrm{EEW}$	$\mathrm{N}^{2} \mathrm{LO}_{\text {HTL }} \otimes \mathrm{NLO}_{\text {QCD }}+\mathrm{NLO}_{\text {EW }}$
$p p \rightarrow H+2 j$	$\begin{aligned} & \mathrm{NLO}_{\mathrm{HTL}} \otimes \mathrm{LOQCD} \\ & \mathrm{~N}^{3} \mathrm{LO}_{Q \mathrm{QCD}}^{(\mathrm{VBF}} \end{aligned}$	$\begin{aligned} & \mathrm{N}^{2} \mathrm{LO}_{H T L} \otimes \mathrm{NLO}_{\mathrm{QCD}}+\mathrm{NLO}_{\mathrm{EW}}, \\ & \mathrm{~N}^{2} \mathrm{LO}_{\mathrm{QCD}}^{(\mathrm{VFP})} \end{aligned}$
$p p \rightarrow H+3 j$	$\mathrm{NLO}_{\mathrm{HTL}}, \mathrm{NLO}_{\text {QCD }}^{(\mathrm{VBF}}$)	$\mathrm{NLO}_{\text {QCD }}+\mathrm{NLO}_{\text {EW }}$
$p p \rightarrow V H$	$\mathrm{N}^{2} \mathrm{LO}_{\mathrm{QCD}}+\mathrm{NLO}_{\mathrm{EW}}, \mathrm{NLO}_{\mathrm{s} \alpha \rightarrow H Z}^{(2,0)}$	
$p p \rightarrow V H+j$	$\mathrm{N}^{2} \mathrm{LOQCD}$	$\mathrm{N}^{2} \mathrm{LOQCD}+\mathrm{NLO}_{\mathrm{EW}}$
$p p \rightarrow H H$	$\mathrm{N}^{3} \mathrm{LO}_{\text {HTL }} \otimes \mathrm{NLO}_{\text {QCD }}$	NLOEW
$p p \rightarrow H+t \bar{t}$	$\mathrm{NLO} \mathrm{QCD}+\mathrm{NLO}_{\text {EW }}, \mathrm{N}^{2} \mathrm{LO}_{\text {QCD }}$ (off-diag.)	$\mathrm{N}^{2} \mathrm{LO}_{\mathrm{QCD}}$
$p p \rightarrow H+t / \bar{t}$	$\mathrm{NLO}_{\mathrm{QCD}}$	$\mathrm{N}^{2} \mathrm{LO}_{\mathrm{QCD}}, \mathrm{NLO}_{\mathrm{QCD}}+\mathrm{NLO}_{\mathrm{EW}}$
$p p \rightarrow V$	$\mathrm{N}^{3} \mathrm{LO}_{\text {QCD }}, \mathrm{N}^{(1,1)} \mathrm{LO}_{\text {QCD }}$ (eww, NLOEW	$\mathrm{N}^{3} \mathrm{LO} \mathrm{QQCD}+\mathrm{N}^{(1,1)} \mathrm{LO}_{\text {QCD }}$ (ew, $\mathrm{N}^{2} \mathrm{LOEW}$
$p p \rightarrow V V^{\prime}$	$\mathrm{N}^{2} \mathrm{LO}_{\mathrm{QCD}}+\mathrm{NLO}_{\mathrm{EW}},+\mathrm{NLO}_{\text {gCD }}(g g)$	NLOQCD ($g g$ massive loops)
$p p \rightarrow V+j$	$\mathrm{N}^{2} \mathrm{LO}_{\mathrm{QCD}}+\mathrm{NLO}_{\mathrm{EW}}$	hadronic decays
$p p \rightarrow V+2 j$	$\mathrm{NLO} \mathrm{QCD}^{+}+\mathrm{NLO}_{\text {EW }}, \mathrm{NLO}_{\text {EW }}$	$\mathrm{N}^{2} \mathrm{LO} \mathrm{QCDD}$
$p p \rightarrow V+b \bar{b}$	NLOQCD	$\mathrm{N}^{2} \mathrm{LO}_{\mathrm{QCD}}+\mathrm{NLO}_{\mathrm{EW}}$
$p p \rightarrow V V^{\prime}+1 j$	$\mathrm{NLO} \mathrm{QCD}^{+}+\mathrm{NLO}_{\text {EW }}$	$\mathrm{N}^{2} \mathrm{LO} \mathrm{QCDD}$
$p p \rightarrow V V^{\prime}+2 j$	$\mathrm{NLO} \mathrm{QCD}^{\text {(}} \mathrm{QCD}$), $\mathrm{NLO}_{\text {QCD }}+\mathrm{NLO}_{\text {EW }}$ (EW)	Full $\mathrm{NLO}_{\mathrm{QCD}}+\mathrm{NLO}_{\text {EW }}$
$p p \rightarrow W^{+} W^{+}+2 j$	Full $\mathrm{NLO}_{\text {QCd }}+\mathrm{NLO}_{\text {EW }}$	
$p p \rightarrow W^{+} W^{-}+2 j$	$\mathrm{NLO} \mathrm{QQCD}^{\text {+ }}+\mathrm{NLO}_{\text {EW }}$ (EW component)	
$p p \rightarrow W^{+} Z+2 j$	$\mathrm{NLO}_{\text {QCD }}+\mathrm{NLO}_{\text {EW }}$ (EW component)	
$p p \rightarrow Z Z+2 j$	Full $\mathrm{NLO}_{\text {QCD }}+\mathrm{NLO}_{\text {EW }}$	
$p p \rightarrow V V^{\prime} V^{\prime \prime}$	NLOqCD, $\mathrm{NLO}_{\mathrm{EW}}$ (w/o decays)	$\mathrm{NLOQCD}+\mathrm{NLO}_{\mathrm{EW}}$
$p p \rightarrow W^{ \pm} W^{+} W^{-}$	$\mathrm{NLO} \mathrm{QQCD}^{+}+\mathrm{NLO}_{\text {ew }}$	
$p p \rightarrow \gamma \gamma$	$\mathrm{N}^{2} \mathrm{LO}_{\text {QCD }}+\mathrm{NLO}_{\text {ew }}$	$\mathrm{N}^{3} \mathrm{LO}_{\text {QCD }}$
$p p \rightarrow \gamma+j$	$\mathrm{N}^{2} \mathrm{LO}_{\mathrm{QCD}}+\mathrm{NLO}_{E W}$	$\mathrm{N}^{3} \mathrm{LO}_{\text {QCD }}$
$p p \rightarrow \gamma \gamma+j$	$\mathrm{N}^{2} \mathrm{LO}_{\mathrm{QCD}}+\mathrm{NLO}_{\mathrm{EW}},+\mathrm{NLO} \mathrm{QCD}^{\text {(}} \mathrm{g} \mathrm{g}$ channel $)$	
$p p \rightarrow \gamma \gamma \gamma$	$\mathrm{N}^{2} \mathrm{LO} \mathrm{QCOCD}^{\text {c }}$	$\mathrm{N}^{2} \mathrm{LO}_{\mathrm{QCD}}+\mathrm{NLO}_{\mathrm{EW}}$
$p p \rightarrow 2$ jets	$\mathrm{N}^{2} \mathrm{LO}_{\mathrm{QCD}}, \mathrm{NLO}_{\text {QCD }}+\mathrm{NLO}_{\mathrm{EW}}$	$\mathrm{N}^{3} \mathrm{LO}_{\mathrm{QCD}}+\mathrm{NLO}_{\mathrm{EW}}$
$p p \rightarrow 3$ jets	$\mathrm{N}^{2} \mathrm{LO}_{\mathrm{QCD}}+\mathrm{NLO}_{\mathrm{EW}}$	
$p p \rightarrow t \bar{t}$	$\begin{aligned} & \mathrm{N}^{2} \mathrm{LO}_{\mathrm{QCD}} \text { (w/ decays)+ NLO } \mathrm{Nw} \text { (w/o decays) } \\ & \mathrm{NLO}_{\mathrm{QCD}}+\mathrm{NLO}_{\mathrm{EW}} \text { (w/ decays, off-shell effects) } \\ & \mathrm{N}^{2} \mathrm{LO}_{\mathrm{QCD}} \end{aligned}$	$\mathrm{N}^{3} \mathrm{LO}_{\text {QCD }}$
$p p \rightarrow t \bar{t}+j$	NLOQCD ($\mathrm{w} /$ decays, off-shell effects) $\mathrm{NLO}_{\mathrm{EW}}$ (w/o decays)	$\mathrm{N}^{2} \mathrm{LOged}+\mathrm{NLOew} \mathrm{(w/decays)}$
$p p \rightarrow t \bar{t}+2 j$	NLOqCe (w/o decays)	$\mathrm{NLO} \mathrm{QQCD}^{\text {c }}+\mathrm{NLO}_{\mathrm{EW}}$ (w/ decays)
$p p \rightarrow t \bar{t}+Z$	$\mathrm{NLO}_{\mathrm{QCD}}+\mathrm{NLO}_{\mathrm{EW}}$ (w/o decays) NLOQCD ($\mathbf{w} /$ decays, off-shell effects)	$\mathrm{N}^{2} \mathrm{LOQCD}+\mathrm{NLOEW}$ (w/decays)
$p p \rightarrow t \bar{t}+W$	$\mathrm{NLO} \mathrm{QQCD}^{\text {+ }}+\mathrm{NLO}_{\text {EW }}$ ($\mathrm{w} /$ decays, off-shell effects)	$\mathrm{N}^{2} \mathrm{LO}_{\text {QCD }}+\mathrm{NLO}_{\text {EW }}(\mathrm{w} /$ decays)
$p p \rightarrow t / t$	$\begin{aligned} & \mathrm{N}^{2} \mathrm{LO}_{\mathrm{QCD}}{ }^{*}(\mathrm{w} / \text { decays }) \\ & \mathrm{NLOEW} \text { (w/o decays) } \end{aligned}$	$\mathrm{N}^{2} \mathrm{LO}_{\mathrm{QCD}}+\mathrm{NLO}_{\text {EW }}$ (w/ decays)
$p p \rightarrow t Z j$	$\mathrm{NLO}_{\text {QCD }}+\mathrm{NLO}_{\text {EW }}$ (w/ decays)	$\mathrm{N}^{2} \mathrm{LO}_{\mathrm{QCD}}+\mathrm{NLO}_{\text {EW }}$ (w/o decays)

Huss, Huston, Josh, Pellen [arXiv:2207.02122]

Outline

Introduction

State-of-the-art and future needs

A touch on techniques

Our survey \& outlook

Computing Scattering Amplitudes

$$
\mathcal{A}=\sum_{\kappa} D_{\kappa}^{\text {Feynman diags }} \rightarrow \sum_{\text {Projectors }} \rightarrow c_{i} F_{i} \rightarrow \sum_{j} C_{j} \mathcal{I}_{j} \underset{\substack{\text { IBPs } / \mathrm{IR} \\ \text { renorm }}}{\rightarrow} \sum_{k} r_{k} h_{k} h_{\text {simplifications }}
$$

Many recent advances make possible recent progress: more optimal techniques for different steps or as shortcuts

Computing Scattering Amplitudes

$$
\mathcal{A}=\sum_{\kappa}^{\text {Feynman diags }} D_{\kappa} \rightarrow \sum_{\text {Projectors }} c_{i} F_{i} \rightarrow \sum_{j} C_{j} \mathcal{I}_{j} \underset{\substack{\text { IBPs }}}{\rightarrow} \sum_{\substack{\text { UV/IR } \\ \text { renorm }}} r_{k} h_{k}
$$

Many recent advances make possible recent progress: more optimal techniques for different steps or as shortcuts

- Usage of method of differential equations for integration spread out, in particular in canonical form [arXiv:1304.1806]
- Deeper understanding of function spaces [arXiv:2203.07088] allow for analytic expressions and more efficient numerical evaluations
- Numerical approaches based on sector decomp automated in public codes pySecDec and Fiesta
- Building finite bases of master integrals have been automated (see e.g. [arXiv:1701.06583])
- Numerically solving diff equations through generalized series expansions [arXiv:1907.13234] has gained momentum, with public implementations appearing (e.g. DiffExp)
- Promising technique for boundary values: the auxiliary mass flow method [arXiv:2107.01864], implemented in the package AMFlow

Computing Scattering Amplitudes

$$
\mathcal{A}=\sum_{\kappa}^{\text {Feynman diags }} D_{\kappa} \rightarrow \sum_{\text {Projectors }} c_{i} F_{i} \rightarrow \sum_{j} C_{j} \mathcal{L}_{j} \rightarrow \underset{\substack{\text { UV/IR } \\ \text { renorm }}}{\rightarrow} \sum_{k} r_{k} h_{k}
$$

Many recent advances make possible recent progress: more optimal techniques for different steps or as shortcuts

- Usage of method of differential equations for integration spread out, in particular in canonical form [arXiv:1304.1806]
- Deeper understanding of function spaces [arXiv:2203.07088] allow for analytic expressions and more efficient numerical evaluations
- Numerical approaches based on sector decomp automated in public codes pySecDec and Fiesta
- Building finite bases of master integrals have been automated (see e.g. [arXiv:1701.06583])
- Numerically solving diff equations through generalized series expansions [arXiv:1907.13234] has gained momentum, with public implementations appearing (e.g. DiffExp)
- Promising technique for boundary values: the auxiliary mass flow method [arXiv:2107.01864], implemented in the package AMFlow
- Advanced one-loop tools available in programs like Helac-NLO, MG5_aMC@NLO, NLOX, OpenLoops, Recola
- Multi-loop analytic integrands aided by better projector methods [arXiv:1906.03298]
- Numerical unitarity extended to two-loop amplitudes [arXiv:1703.05273], exploiting a novel master-surface integrand parametrization [arXiv:1510.05626]
- Major advances in tools for IBP reduction, like for example Fire, Reduze, LiteRed and Kira
- Methods based on numerical evaluations in finite fields and functional reconstruction [arXiv:1406.4513] [arXiv:1608.01902] have become standard
- Many advances in simplifications of complex expressions, e.g. by developing multivariate partial fraction algorithms [arXiv:1904.00945]

Two-Loop Numerical Unitarity

Decompose \mathcal{A} in terms of master integrals:

$$
\mathcal{A}^{(L)}=\sum_{\Gamma \in \Delta} \sum_{i \in M_{\Gamma}} c_{\Gamma, i} \mathcal{I}_{\Gamma, i}
$$

Drop the integral symbol, introducing the integrand ansatz:

$$
\mathcal{A}^{(L)}\left(\ell_{l}\right)=\sum_{\Gamma \in \Delta} \sum_{k \in Q_{\Gamma}} c_{\Gamma, k} \frac{m_{\Gamma, k}\left(\ell_{l}\right)}{\prod_{j \in P_{\Gamma}} \rho_{j}\left(\ell_{l}\right)}
$$

Functions $\mathcal{Q}_{\Gamma}=\left\{m_{\Gamma, k}\left(\ell_{l}\right) \mid k \in Q_{\Gamma}\right\}$ parametrize every possible integrand (up to a given power of loop momenta). E.g.:

- Tensor Basis: construct \mathcal{Q} from monomials of loop momenta (parameters). Easy to build for general integrands, non-trivial relation to master integrals. Easy to extract function-space dim
- Master-Surface Basis: a clever choice of parametrization makes mapping to master integrals straightforward [Ita, arXiv:1510.05626]. Break $Q_{\Gamma}=M_{\Gamma} \cup S_{\Gamma}$, where S_{Γ} integrate to zero and M_{Γ} correspond to master integrands

Master/Surface Decompositions

Consider the integration by parts (IBP) relation on Γ

$$
0=\int \prod_{i} d^{D} \ell_{i} \frac{\partial}{\partial \ell_{j}^{\nu}}\left[\frac{u_{j}^{\nu}}{\prod_{k \in P_{\Gamma}} \rho_{k}}\right]
$$

making it unitarity compatible (controlling the propagator structure) [Gluza, Kadja, Kosower '10; Schabinger '11]

$$
u_{j}^{\nu} \frac{\partial}{\partial \ell_{j}^{\nu}} \rho_{k}=f_{k} \rho_{k}
$$

Write ansatz for u_{j}^{ν} expanded in external and loop momenta, and find solution to the polynomial equations using the CAS Singular

Build a full set of surface terms and fill the rest of the space with master integrands

Related [Boehm, Georgoudis, Larsen, Schulze, Zhang '16-'19]
[Agarwal, von Manteuffel '19]

A 1-loop Example for Surface Terms: Part 1

Consider the 1-loop 1-mass triangle with

$$
\rho_{1}=\left(\ell+p_{1}\right)^{2}, \quad \rho_{2}=\ell^{2}, \quad \rho_{3}=\left(\ell-p_{2}\right)^{2}
$$

and we construct $u^{\nu} \partial / \partial \ell^{\nu}$ by parametrizing

$$
u^{\nu}=u_{1}^{\mathrm{ext}} p_{1}^{\nu}+u_{2}^{\mathrm{ext}} p_{2}^{\nu}+u^{\mathrm{loop}} \ell^{\nu}
$$

We then get the syzygy equation (polynomial equation):

$$
\left(u_{1}^{\mathrm{ext}} p_{1}^{\nu}+u_{2}^{\mathrm{ext}} p_{2}^{\nu}+u^{\mathrm{loop}} \ell^{\nu}\right) \frac{\partial}{\partial \ell^{\nu}}\left(\begin{array}{c}
\rho_{1} \\
\rho_{2} \\
\rho_{3}
\end{array}\right)-\left(\begin{array}{l}
f_{1} \rho_{1} \\
f_{2} \rho_{2} \\
f_{3} \rho_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

We can then show that we have the solution for the IBP-generating vector:

$$
u^{\nu} \frac{\partial}{\partial \ell^{\nu}}=\left[\left(\rho_{3}-\rho_{2}\right) p_{1}^{\nu}+\left(\rho_{1}+\rho_{2}\right) p_{2}^{\nu}+\left(-s+2 \rho_{3}-2 \rho_{2}\right) \ell^{\nu}\right] \frac{\partial}{\partial \ell^{\nu}}
$$

A 1-loop Example for Surface Terms: Part 2

Now we have the surface term:

$$
0=\int d^{D} \ell \frac{\partial}{\partial l^{\nu}} \frac{u^{\nu}}{\rho_{1} \rho_{2} \rho_{3}}=\int d^{D} \ell \frac{1}{\rho_{1} \rho_{2} \rho_{3}}\left[-(D-4) s-2(D-3) \rho_{2}+2(D-3) \rho_{3}\right]
$$

The scalar triangle integrand can be replaced by a surface term, though commonly it is kept, the corresponding "master" integral in OPP reduction.

The IBP relation between the triangle and the $s=\left(p_{1}+p_{2}\right)^{2}$ bubble is:

$$
-(D-4) s I_{\mathrm{tri}}-2(D-3) I_{\mathrm{s} \text {-bub }}=0
$$

Similar manipulations can be carried out at two loops. More complicated syzygy equations (polynomial relations) need to be solved (e.g. with Singular)

Unitarity Approach to Computing Integrand Coefficients

[Bern, Dixon, Dunbar, Kosower] [Britto, Cachazo, Feng]

- In on-shell configurations of ℓ_{l}, the integrand factorizes

$$
\sum_{\text {states }} \prod_{i \in T_{\Gamma}} \mathcal{A}_{i}^{\text {tree }}\left(\ell_{l}^{\Gamma}\right)=\sum_{\substack{\Gamma^{\prime} \geq \Gamma \\ k \in \bar{Q}_{\Gamma^{\prime}}}} \frac{c_{\Gamma^{\prime}, k} m_{\Gamma^{\prime}, k}\left(\ell_{l}^{\Gamma}\right)}{\prod_{j \in\left(P_{\Gamma^{\prime}} / P_{\Gamma}\right)} \rho_{j}\left(\ell_{l}^{\Gamma}\right)}
$$

- Need efficient computation of (products of) tree-level amplitudes
- On-shell recursions, Berends-Giele relations, etc
- D_{s}-dimensional state sum
- Never construct analytic integrand, numerics for every phase-space point!

Numerical Stability:
e.g. 4-ghuon amplituder

Function spaces with $O(10 / 50)$ dimensiona

Funchion spaces with $O(100 / 1000)$ dimentions

* Relitive precision of two-lorp 4-gluon amp mumerical calculation
* High-precision floating point arithmetic a remedy
[Abreu, FFC, Ita, Jaquier, Page, Zeng, '17]

Modular Algebra:
[rom Mantenffel, Schabinger, 2014]

* Integral vecuction con be parfomed evactly in CAS if kinematical info is RATIONAL $\left(x_{i} \in \mathbb{Q}^{m}\right)$
* Nevertheless, RATIONAL computer algebra reflect the mumerical complexity of comesponding ANALYTTic STRUCURE (Compuntion al Algoritim)

FINITE (NOMBER) FIELDS: [vo Mantenffel, Schabinger, 2014]

* MAP Q^{m} into \mathbb{F}_{p}^{n} and try to reconstruct result!
* If cardinality p is smaller than CPU's word size (2 2^{64}) opention will be very fast
* "Lift" back operation, or nation reconstruction works well if $\frac{P}{7}$ is "Simple" enough (OR MORE \mathbb{F}_{P}^{\prime} 's needed!).

Extracting Functional Form from Numerics

INTEGRAL COEFFS AS FUNCTIONS of ε :
$A\left(l_{l}\right)=\sum_{\Gamma, i} C_{\Gamma, i} \frac{m_{\Gamma, i}\left(l_{l}\right)}{\prod_{k \in \Gamma} \rho_{k}\left(l_{l}\right)} \rightarrow C_{\Gamma, i}$ are functimif
Indeed $C_{\Gamma i i}$ appear is rational function $f=$

$$
\left.C_{\Gamma_{i}}=\frac{\sum_{j} f_{i}\left(x_{k}\right) \varepsilon^{j+N}}{\sum_{j} q_{j} z^{j+1}}\right\} \begin{gathered}
\text { STRUCTURE } \\
\text { NoT KNown } \\
\text { APRiORi }
\end{gathered}
$$

ε dependence comes form the s structure of $m_{\Gamma, i}\left(l_{e}\right)$ and Through liver algebra ("subtactim" procure)

Functional Reconstruction from Numeric Samples
Thiele's interpolation formula:
Every national function can be wniten as a contriad fractor

* Detrmine a_{i} by earaluating $f\left(y_{i}\right)$
* Stop shen $f\left(y_{i+1}\right)$ mitcher intepphated mhere (+ atima dade $)$
* Through orly fuld operation recover natioul function
(FF's reult an be lftitto \mathbb{Q})
See also [Peraro, arXiv:1608.01902] for multi-variate case [Peraro, FiniteFlow, arXiv:1905.08019] [Klappert, Klein, Lange, Firefly, arXiv:2004.01463]

IR structure:

$$
\begin{aligned}
& A_{R}^{(1)}=\underbrace{\mathbb{H}^{(1)} A^{(0)}}_{\left.\frac{1}{\varepsilon^{2}}\right)^{\frac{1}{2}}+\operatorname{don}}+O\left(\varepsilon^{0}\right) \\
& K_{R}^{(2)}=\underbrace{\mathbb{H}^{(1)} A_{R}^{(1)}+\mathbb{I}^{(2)} A_{R}^{(0)}}_{\mathbb{H}^{(1)}}+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

Dofine Remaindar:

$$
\begin{aligned}
& R^{(1)}=A_{R}^{(1)}-\mathbb{I}^{(1)} A_{R}^{(0)}+\theta(\varepsilon) \\
& R^{(2)}=A_{R}^{(2)}-\mathbb{I}^{(1)} A_{R}^{(1)}-\mathbb{I}^{(2)} A_{R}^{(0)}+O(\varepsilon)
\end{aligned}
$$

Optimize Ansatze
By phyial constanits:

Determining $\prod_{k} W_{k}^{d h}\left(s_{i j}\right)$ can be achiered by unisrinte reconstruction in curver $S_{i j}(\lambda)$ and polynomal division!

Multivirite veconstruction reduced to detemination of the polyomiale $n_{k}^{ \pm}\left(s_{i j}\right)$
\rightarrow Suimplify by multivanite pritul fractions! Reanios Tor
[uder, m Mherefife]

Outline

Introduction

State-of-the-art and future needs

A touch on techniques

Our survey \& outlook

Survey on Multi-Loop Developments for Colliders

- As part of our white paper [arXiv:2204.04200] we performed a survey about resources needed to complete recent state-of-the-art calculations for precision collider phenomenology
- We received information about calculations appearing in 53 scientific publications
- Example questions:
- What computational resources did you employ?
- How many PhD/PD years went into this project?
- What kind of grow do you expect for the resources needed in your mid-term projects?

Survey on Multi-Loop Developments for Colliders

- As part of our white paper [arXiv:2204.04200] we performed a survey about resources needed to complete recent state-of-the-art calculations for precision collider phenomenology
- We received information about calculations appearing in 53 scientific publications
- Example questions:
- What computational resources did you employ?
- How many PhD/PD years went into this project?
- What kind of grow do you expect for the resources needed in your mid-term projects?

[^0]
Some of the Feedback

- HPC usage a standard in our community. For the first time HPC systems used for CAS!
- Typical project requires 2-5 PhD/PD years to complete, and often rely on a decade (or more) of developments
- Numerical and semi-numerical methods on the forefront, we forecast significant rise. GPU usage not spread out

Some of the Feedback

- HPC usage a standard in our community. For the first time HPC systems used for CAS!
- Typical project requires 2-5 PhD/PD years to complete, and often rely on a decade (or more) of developments
- Numerical and semi-numerical methods on the forefront, we forecast significant rise. GPU usage not spread out
- Estimate of HPC usage:

Outlook

- Settling the SM status at the (under) 1% level will be one great achievement of the LHC, and we look forward to even more!
- After this Snowmass cycle we might expect as common place matched $2 \rightarrow 3$ NNLO studies, fixed order $2 \rightarrow 2 \mathrm{~N}^{3} \mathrm{LO}$ calculations and even $\mathrm{N}^{4} \mathrm{LO}$ results
- Significant investment is required to deliver the techniques, algorithms and implementations needed to achieve that
- The amplitudes community is very vibrant and continuous advances in our understanding of field theory will keep driving progress in precision collider phenomenology

Outlook

- Settling the SM status at the (under) 1% level will be one great achievement of the LHC, and we look forward to even more!
- After this Snowmass cycle we might expect as common place matched $2 \rightarrow 3$ NNLO studies, fixed order $2 \rightarrow 2 \mathrm{~N}^{3} \mathrm{LO}$ calculations and even $\mathrm{N}^{4} \mathrm{LO}$ results
- Significant investment is required to deliver the techniques, algorithms and implementations needed to achieve that
- The amplitudes community is very vibrant and continuous advances in our understanding of field theory will keep driving progress in precision collider phenomenology

Thanks!

[^0]: We thank them all as well as their collaborators! Samuel Abreu, Bakul Agarwal, Konstantin Asteriadis, Simon Badger, Matteo Becchetti, Marco Bonetti, Federico Buccioni, Luca Buonocore, Fabrizio Caola, Gudrun Heinrich, Alexander Huss, Stephen P. Jones, Stefan Kallweit, Matthias Kerner, Matteo Marcoli, Javier Mazzitelli, Johannes Michel, Sven Moch, Marco Niggetiedt, Costas Papadopoulos, Mathieu Pellen, Rene Poncelet, Jérémie Quarroz, Luca Rottoli, Gabor Somogyi, Qian Song, Vasily Sotnikov, Matthias Steinhauser, Gherardo Vita, Chen-Yu Wang, Stefan Weinzierl, Marius Wiesemann, Malgorzata Worek, Tongzhi Yang and YuJiao Zhu.

