Fernando Febres Cordero
Department of Physics, Florida State University

Snowmass CSS, University of Washington, Seattle, 7/22/2022

Based on the Snowmass White Paper [arXiv:2204.04200]
With Andreas von Manteuffel and Tobias Neumann
References From the Snowmass Process

- **Snowmass reports**

 - **Energy Frontier**: Narain, Reina, Tricoli, (& contributors)

 - **EF05-07 – QCD Report**: Begel, Höche, Lin, Mukherjee, Nadolsky, Royon, Schmitt, (& contributors)

 - **TF04 – Scattering Amplitudes and their Applications**: Bern, Trnka, (& contributors)

 - **TF06 – Theory Techniques for Precision Physics**: Boughezal, Ligeti, (& contributors)

 - **TF07 – Theory of Collider Phenomena**: Maltoni, Su, Thaler, (& contributors)

- **Snowmass white papers**

 - **Computational challenges for multi-loop collider phenomenology**: FFC, von Manteuffel, Neumann [arXiv:2204.04200]

 - **The Path forward to N^3LO**: Caola, Chen, Duhr, Liu, Mistlberger, Petriello, Vita, Weinzierl [arXiv:2203.06730]

 - See also: Special funcs [arXiv:2203.07088], Coll factorization [arXiv:2207.06507]

And references therein!
References From the Snowmass Process

- **Snowmass reports**

 - **Energy Frontier**: Narain, Reina, Tricoli, (& contributors)
 - **EF05-07 – QCD Report**: Begel, Höche, Lin, Mukherjee, Nadolsky, Royon, Schmitt, (& contributors)
 - **TF04 – Scattering Amplitudes and their Applications**: Bern, Trnka, (& contributors)
 - **TF06 – Theory Techniques for Precision Physics**: Boughezal, Ligeti, (& contributors)
 - **TF07 – Theory of Collider Phenomena**: Maltoni, Su, Thaler, (& contributors)

- **Snowmass white papers**

 - **Computational challenges for multi-loop collider phenomenology**: FFC, von Manteuffel, Neumann [arXiv:2204.04200]
 - **The Path forward to N^{3}LO**: Caola, Chen, Duhr, Liu, Mistlberger, Petriello, Vita, Weinzierl [arXiv:2203.06730]
 - See also: Special funcs [arXiv:2203.07088], Coll factorization [arXiv:2207.06507]

And references therein!

Apologies in advance for not covering all the impressive related activity!
Outline

Introduction

State-of-the-art and future needs

A touch on techniques

Our survey & outlook
20-fold increase in data sets at the LHC experiments in the next decades

Reaching few-percent uncertainties in cross sections for processes with 3 (or more) objects in the final state
Snowmass Projections for Higgs Couplings

HL-LHC can achieve $\mathcal{O}(\text{few \%})$ errors for Higgs coupling measurements

Critical input from multi-scale theory predictions, typically in processes involving 3 (or more) FS objects
Hadron Collider Event Simulation

- Factorization
- Hard scattering
- Parton evolution
- Simulation underlying event and hadronization
- Particle decays and radiation

\[\sigma_{h_1 h_2 \rightarrow H} = \sum_{a,b} \int dxa \, dx_b \, f_{a/h_1}(x_a, \mu_F) \, f_{b/h_2}(x_b, \mu_F) \hat{\sigma}_{ab \rightarrow H + X}(\mu_F, \mu_R) \]

Snowmass contribution: Sterman [arXiv:2207.06507]
Uncertainties in Perturbative Predictions

Parametric: determination of model’s parameters

couplings, PDFs, masses

\[\hat{\sigma}_{ab \rightarrow H} = \alpha_s^\kappa \left(\sigma_{LO} + \alpha_s \sigma_{NLO} + \alpha_s^2 \sigma_{NNLO} + \alpha_s^3 \sigma_{N^3LO} + \cdots \right) \]

From G. Salam
Truncation and Underlying Amplitudes

\[\sigma_{h_1 h_2 \rightarrow H} = \alpha_s^k \left(\sigma_{\text{LO}} + \alpha_s \sigma_{\text{NLO}} + \alpha_s^2 \sigma_{\text{NNLO}} + \alpha_s^3 \sigma_{\text{N^3LO}} + \cdots \right) \]
NNLO Progress in Time

Slide by L. Cieri, inspired by G. Salam
N^3LO Progress in Time

N^3LO AT THE LHC OVER TIME

Slide inspired by G. Salam / L. Cieri...

Higgs Threshold Exp. [Anastasiou, Duhr, Dulat, Herzog, BM, 15]
Higgs Jet Veto [Banfi, et al. 15]
Higgs VBF [Dreyer, Karlberg, 16]
Higgs Diff. Threshold App. [Dulat, BM, A. Pelloni, 17]
Higgs, [BM, 18]
Higgs Diff. qT [Cieri, Chen, Gehrmann, Glover, Huss, 18]
HH (VBF) [Dreyer, Karlberg, 18]
Higgs (Y approx.) [Dulat, BM, Pelloni, 18]
bb->H [Dulat, Duhr, BM, 19]
ggF->HH [Chen, Li, Shoa, Wang]
Drell-Yan [Dulat, Duhr, BM, 20]
bbH 4FS+5FS [Dulat, Duhr, Hirschi, BM, 20]
CCDY [Dulat, Duhr, BM, 20]
Fully differential Higgs -> 2Photons [Chen, BM, et al. 20]
Fiducial Higgs and DY [Billis, Tackmann, et al., 21]
Fiducial DY [Camarda, Cieri, Ferrera, 21]

Slide by B. Mistlberger

(Better) Theory Uncertainties

- Probabilistic definition of the perturbative theoretical uncertainty, Bonvini [arXiv:2006.16293]
- Bayesian estimates for missing higher orders in perturbative calculations, Duhr, Huss, Mazeliauskas, Szafron [arXiv:2106.04585]
Squeezing the physics from collider data
Outline

- Introduction
- State-of-the-art and future needs
- A touch on techniques
- Our survey & outlook
Five+ Scales at Two Loops

Integrals

<table>
<thead>
<tr>
<th>Scale</th>
<th>Authors</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>5pt 0M P</td>
<td>Papadopoulos et al.</td>
<td>[arXiv:1511.09404]</td>
</tr>
<tr>
<td>5pt 0M P (pent funcs)</td>
<td>Gehrmann et al.</td>
<td>[arXiv:1807.09812]</td>
</tr>
<tr>
<td>5pt 1M P</td>
<td>Papadopoulos et al.</td>
<td>[arXiv:1910.06275]</td>
</tr>
<tr>
<td>5pt 1M P</td>
<td>Abreu et al.</td>
<td>[arXiv:2005.04195]</td>
</tr>
<tr>
<td>5pt 1M P</td>
<td>Canko et al.</td>
<td>[arXiv:2009.13917]</td>
</tr>
<tr>
<td>5pt 0M NP (pent funcs)</td>
<td>Chicherin et al.</td>
<td>[arXiv:2009.07803]</td>
</tr>
<tr>
<td>5pt 1M NP HB</td>
<td>Papadopoulos et al.</td>
<td>[arXiv:2107.14180]</td>
</tr>
<tr>
<td>5pt 1M NP HB</td>
<td>Abreu et al.</td>
<td>[arXiv:2107.14180]</td>
</tr>
<tr>
<td>5pt 1M NP HB</td>
<td>Kardos et al.</td>
<td>[arXiv:2201.07509]</td>
</tr>
</tbody>
</table>

Amplitudes (analytic)

<table>
<thead>
<tr>
<th>Scale</th>
<th>Authors</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 gluon all-plus LC</td>
<td>Gehrmann et al.</td>
<td>[arXiv:1511.05409]</td>
</tr>
<tr>
<td>5 gluon single-minus LC</td>
<td>Badger et al.</td>
<td>[arXiv:1811.11699]</td>
</tr>
<tr>
<td>5 gluon LC</td>
<td>Abreu et al.</td>
<td>[arXiv:1812.04586]</td>
</tr>
<tr>
<td>5 parton LC</td>
<td>Abreu et al.</td>
<td>[arXiv:1904.00945]</td>
</tr>
<tr>
<td>5 gluon all-plus</td>
<td>Badger et al.</td>
<td>[arXiv:1905.03733]</td>
</tr>
<tr>
<td>2-q 3-γ LC</td>
<td>Abreu et al.</td>
<td>[arXiv:2010.15834], Chawdhry et al.</td>
</tr>
<tr>
<td>3-p 2-γ LC</td>
<td>Agarwal et al.</td>
<td>[arXiv:2102.01820], Chawdhry et al.</td>
</tr>
<tr>
<td>3 jet LC</td>
<td>Abreu et al.</td>
<td>[arXiv:2102.13609]</td>
</tr>
<tr>
<td>3-p 2-γ</td>
<td>Agarwal et al.</td>
<td>[arXiv:2105.04585]</td>
</tr>
<tr>
<td>2-q H 2-b LC</td>
<td>Badger et al.</td>
<td>[arXiv:2107.14733]</td>
</tr>
<tr>
<td>4-p 2-l LC</td>
<td>Abreu et al.</td>
<td>[arXiv:2110.07541]</td>
</tr>
<tr>
<td>3-p γ 2-l LC</td>
<td>Badger et al.</td>
<td>[arXiv:2201.04075]</td>
</tr>
</tbody>
</table>
By now all three-loop four-parton and two-parton two-photon amplitudes have been computed.

- **Integrals**
 - 4-point massless, Henn, Mistlberger, Smirnov, Wasser [arXiv:2002.09492]
 - 4-point 1-mass tennis-court, Canko, Syrrakos [arXiv:2112.14275]

- **Amplitudes**
 - 4-quark, Caola, Chakraborty, Gambuti, von Manteuffel, Tancredi [arXiv:2108.00055]
 - 2-gluon 2-\(\gamma\), Bargiela, Caola, von Manteuffel, Tancredi [arXiv:2111.13595]
 - 4-gluon, Caola, Chakraborty, Gambuti, von Manteuffel, Tancredi [arXiv:2112.11097]
Related Progress at Four+ Loops

- **Four-loop form factors for \(2 \rightarrow 1\) processes**
 - Henn, Smirnov, Smirnov, Steinhauser [arXiv:1604.03126]
 - Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser [arXiv:2202.04660]
 - Chakraborty, Huber, Lee, von Manteuffel, Schabinger, Smirnov, Smirnov, Steinhauser [arXiv:2204.02422]

- **Progress on four-loop splitting functions**
 - Moch, Ruijl, Ueda, Vermaseren, Vogt [arXiv:1707.08315]
 - Moch, Ruijl, Ueda, Vermaseren, Vogt [arXiv:2111.15561]
 - (See the recent usage in the “aN^3LO” set from the MSHT PDF set! [arXiv:2207.04739])

- **Five-loop beta functions**
 - Herzog, Ruijl, Ueda, Vermaseren, Vogt [arXiv:1701.01404]
 - Luthe, Maier, Marquard, Schroder [arXiv:1709.07718]
The Future: Immediate Needs

Summary of the Les Houches precision wishlist for hadron colliders.

HTL stands for calculations in heavy top limit, VBF* stands for structure function approximation.

<table>
<thead>
<tr>
<th>process</th>
<th>known</th>
<th>desired</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pp \rightarrow H$</td>
<td>N^3LO_{HTL}, N^2LO_{QCD}</td>
<td>N^3LO_{HTL} (incl.), $N^2LO_{QCD}^{(b)}$</td>
</tr>
<tr>
<td>$pp \rightarrow H + j$</td>
<td>$N^3LO_{HTL}, NLO_{QCD}, N^3LO_{QCD}^{(b)}$</td>
<td>N^3LO_{HTL} (incl.), $N^2LO_{QCD}^{(b)}$</td>
</tr>
<tr>
<td>$pp \rightarrow H + 2j$</td>
<td>$NLO_{HTL} \otimes NLO_{QCD}$</td>
<td>$NLO_{HTL} \otimes NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow H + 3j$</td>
<td>$NLO_{HTL} \otimes NLO_{QCD}$</td>
<td>$NLO_{HTL} \otimes NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow VH$</td>
<td>$N^2LO_{QCD} + NLO_{EW}$</td>
<td>NLO_{QCD}</td>
</tr>
<tr>
<td>$pp \rightarrow V + j$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow V + t\bar{t}$</td>
<td>NLO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow V + b\bar{b}$</td>
<td>NLO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow WW^{*}$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow ZZ^{*}$</td>
<td>N^2LO_{QCD}</td>
<td>NLO_{QCD}</td>
</tr>
<tr>
<td>$pp \rightarrow H$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow H + j$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow H + 2j$</td>
<td>$NLO_{HTL} \otimes NLO_{QCD}$</td>
<td>NLO_{EW}</td>
</tr>
<tr>
<td>$pp \rightarrow H + 3j$</td>
<td>NLO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow V + j$</td>
<td>NLO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow V + t\bar{t}$</td>
<td>NLO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow V + b\bar{b}$</td>
<td>NLO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow WW^{*}$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow ZZ^{*}$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow H$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow H + j$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow H + 2j$</td>
<td>$NLO_{HTL} \otimes NLO_{QCD}$</td>
<td>NLO_{EW}</td>
</tr>
<tr>
<td>$pp \rightarrow H + 3j$</td>
<td>NLO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow V + j$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow V + t\bar{t}$</td>
<td>NLO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow V + b\bar{b}$</td>
<td>NLO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow WW^{*}$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow ZZ^{*}$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow H$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow H + j$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow H + 2j$</td>
<td>$NLO_{HTL} \otimes NLO_{QCD}$</td>
<td>NLO_{EW}</td>
</tr>
<tr>
<td>$pp \rightarrow H + 3j$</td>
<td>NLO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow V + j$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow V + t\bar{t}$</td>
<td>NLO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow V + b\bar{b}$</td>
<td>NLO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow WW^{*}$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow ZZ^{*}$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow H$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow H + j$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow H + 2j$</td>
<td>$NLO_{HTL} \otimes NLO_{QCD}$</td>
<td>NLO_{EW}</td>
</tr>
<tr>
<td>$pp \rightarrow H + 3j$</td>
<td>NLO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow V + j$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow V + t\bar{t}$</td>
<td>NLO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow V + b\bar{b}$</td>
<td>NLO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow WW^{*}$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow ZZ^{*}$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow H$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow H + j$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow H + 2j$</td>
<td>$NLO_{HTL} \otimes NLO_{QCD}$</td>
<td>NLO_{EW}</td>
</tr>
<tr>
<td>$pp \rightarrow H + 3j$</td>
<td>NLO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow V + j$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow V + t\bar{t}$</td>
<td>NLO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow V + b\bar{b}$</td>
<td>NLO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow WW^{*}$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
<tr>
<td>$pp \rightarrow ZZ^{*}$</td>
<td>N^2LO_{QCD}</td>
<td>$NLO_{QCD} + NLO_{EW}$</td>
</tr>
</tbody>
</table>

Huss, Huston, Josh, Pellen [arXiv:2207.02122]
Outline

Introduction

State-of-the-art and future needs

A touch on techniques

Our survey & outlook
Computing Scattering Amplitudes

\[\mathcal{A} = \sum_\kappa D_\kappa \rightarrow \sum_i c_i F_i \rightarrow \sum_j C_j \mathcal{I}_j \rightarrow \sum_k r_k h_k \]

Many recent advances make possible recent progress: more optimal techniques for different steps or as shortcuts.
Many recent advances make possible recent progress: more optimal techniques for different steps or as shortcuts

- Deeper understanding of function spaces \[\text{arXiv:2203.07088}\] allow for analytic expressions and more efficient numerical evaluations
- Numerical approaches based on sector decomp automated in public codes \text{pySecDec} and \text{Fiesta}
- Building finite bases of master integrals have been automated (see e.g. \[\text{arXiv:1701.06583}\])
- Numerically solving diff equations through generalized series expansions \[\text{arXiv:1907.13234}\] has gained momentum, with public implementations appearing (e.g. \text{DiffExp})
- Promising technique for boundary values: the auxiliary mass flow method \[\text{arXiv:2107.01864}\], implemented in the package \text{AMFlow}
Computing Scattering Amplitudes

Feynman diags

\[A = \sum_{\kappa} D_{\kappa} \rightarrow \sum_{i} c_{i} F_{i} \rightarrow \sum_{j} C_{j} I_{j} \rightarrow \sum_{k} r_{k} h_{k} \]

Projectors

Form factors

Master ints

Special functs

Many recent advances make possible recent progress: more optimal techniques for different steps or as shortcuts

- Usage of method of differential equations for integration spread out, in particular in canonical form [arXiv:1304.1806]

- Deeper understanding of function spaces [arXiv:2203.07088] allow for analytic expressions and more efficient numerical evaluations

- Numerical approaches based on sector decomp automated in public codes pySecDec and Fiesta

- Building finite bases of master integrals have been automated (see e.g. [arXiv:1701.06583])

- Numerically solving diff equations through generalized series expansions [arXiv:1907.13234] has gained momentum, with public implementations appearing (e.g. DiffExp)

- Promising technique for boundary values: the auxiliary mass flow method [arXiv:2107.01864], implemented in the package AMFlow

- Advanced one-loop tools available in programs like Helac-NLO, MG5_aMC@NLO, NLOX, OpenLoops, Recola

- Multi-loop analytic integrands aided by better projector methods [arXiv:1906.03298]

- Major advances in tools for IBP reduction, like for example Fire, Reduze, LiteRed and Kira

- Methods based on numerical evaluations in finite fields and functional reconstruction [arXiv:1406.4513] [arXiv:1608.01902] have become standard

- Many advances in simplifications of complex expressions, e.g. by developing multivariate partial fraction algorithms [arXiv:1904.00945]
Two-Loop Numerical Unitarity

Decompose \mathcal{A} in terms of master integrals:

$$\mathcal{A}^{(L)} = \sum_{\Gamma \in \Delta} \sum_{i \in M_{\Gamma}} c_{\Gamma,i} \mathcal{I}_{\Gamma,i}$$

Drop the integral symbol, introducing the integrand ansatz:

$$\mathcal{A}^{(L)}(\ell_l) = \sum_{\Gamma \in \Delta} \sum_{k \in Q_{\Gamma}} c_{\Gamma,k} \frac{m_{\Gamma,k}(\ell_l)}{\prod_{j \in P_{\Gamma}} \rho_j(\ell_l)}$$

Functions $Q_{\Gamma} = \{ m_{\Gamma,k}(\ell_l) | k \in Q_{\Gamma} \}$ parametrize every possible integrand (up to a given power of loop momenta). E.g.:

- **Tensor Basis**: construct Q from monomials of loop momenta (parameters). Easy to build for general integrands, non-trivial relation to master integrals. Easy to extract function-space dim

- **Master-Surface Basis**: a clever choice of parametrization makes mapping to master integrals straightforward [Ita, arXiv:1510.05626]. Break $Q_{\Gamma} = M_{\Gamma} \cup S_{\Gamma}$, where S_{Γ} integrate to zero and M_{Γ} correspond to master integrands
Consider the integration by parts (IBP) relation on Γ

$$0 = \int \prod_i d^D \ell_i \frac{\partial}{\partial \ell_j^\nu} \left[\frac{u_j^\nu}{\prod_{k \in \Gamma} \rho_k} \right]$$

making it unitarity compatible (controlling the propagator structure) [Gluza, Kadja, Kosower '10; Schabinger '11]

$$u_j^\nu \frac{\partial}{\partial \ell_j^\nu} \rho_k = f_k \rho_k$$

Write ansatz for u_j^ν expanded in external and loop momenta, and find solution to the polynomial equations using the CAS SINGULAR

Build a full set of surface terms and fill the rest of the space with master integrands

Related [Boehm, Georgoudis, Larsen, Schulze, Zhang '16 - '19] [Agarwal, von Manteuffel '19]
A 1-loop Example for Surface Terms: Part 1

Consider the 1-loop 1-mass triangle with

\[\rho_1 = (\ell + p_1)^2, \quad \rho_2 = \ell^2, \quad \rho_3 = (\ell - p_2)^2 \]

and we construct \(u^\nu \partial / \partial \ell^\nu \) by parametrizing

\[u^\nu = u^\text{ext}_1 p_1^\nu + u^\text{ext}_2 p_2^\nu + u^\text{loop}_\ell \]

We then get the syzygy equation (polynomial equation):

\[
\left(u^\text{ext}_1 p_1^\nu + u^\text{ext}_2 p_2^\nu + u^\text{loop}_\ell \right) \frac{\partial}{\partial \ell^\nu} \begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \end{pmatrix} - \begin{pmatrix} f_1 \rho_1 \\ f_2 \rho_2 \\ f_3 \rho_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
\]

We can then show that we have the solution for the IBP-generating vector:

\[
u^\nu \frac{\partial}{\partial \ell^\nu} = \left[(\rho_3 - \rho_2) p_1^\nu + (\rho_1 + \rho_2) p_2^\nu + (-s + 2\rho_3 - 2\rho_2) \ell^\nu \right] \frac{\partial}{\partial \ell^\nu}
\]
Now we have the surface term:

$$0 = \int d^D \ell \frac{\partial}{\partial l^\nu} \frac{u^\nu}{\rho_1 \rho_2 \rho_3} = \int d^D \ell \frac{1}{\rho_1 \rho_2 \rho_3} \left[-(D-4)s - 2(D-3)\rho_2 + 2(D-3)\rho_3 \right]$$

The scalar triangle integrand can be replaced by a surface term, though commonly it is kept, the corresponding “master” integral in OPP reduction.

The IBP relation between the triangle and the $s = (p_1 + p_2)^2$ bubble is:

$$-(D-4)sI_{\text{tri}} - 2(D-3)I_{s\text{-bub}} = 0$$

Similar manipulations can be carried out at two loops. More complicated syzygy equations (polynomial relations) need to be solved (e.g. with SINGULAR)
Unitarity Approach to Computing Integrand Coefficients

[Bern, Dixon, Dunbar, Kosower] [Britto, Cachazo, Feng]

- In on-shell configurations of \(\ell_i \), the integrand factorizes

\[
\sum_{\text{states } i \in T_\Gamma} \prod A_i^{\text{tree}}(\ell_i^\Gamma) = \sum_{\Gamma' \geq \Gamma} \frac{c_{\Gamma',k} m_{\Gamma',k}(\ell_i^\Gamma)}{\prod_{j \in (P_{\Gamma'/P_{\Gamma}})} \rho_j(\ell_i^\Gamma)} \quad (1)
\]

- Need efficient computation of (products of) tree-level amplitudes
 - On-shell recursions, Berends-Giele relations, etc
 - \(D_s \)-dimensional state sum

- Never construct analytic integrand, numerics for every phase-space point!
NUMERICAL STABILITY:

e.g. 4-gluon amplitudes

Function spaces with $O(10/50)$ dimensions

Function spaces with $O(100/1000)$ dimensions

Relative precision of two-loop 4-gluon amp necessitates calculation

High-precision floating point arithmetic a remedy

[Abreu, FFC, Ita, Jaquier, Page, Zeng, '17]
Modular Algebra: [von Manteuffel, Schabinger, 2014]

* Integral reduction can be performed exactly in CAS if kinematical info is **RATIONAL** \((x_i \in \mathbb{Q}^n)\).

* Nevertheless, **RATIONAL** computer algebra reflects the numerical complexity of corresponding **analytic structure** (computational algorithm).

\[
X_i \quad \rightarrow \quad f(X_i) \quad \rightarrow \quad \frac{P}{Q}
\]

"Simple" input \(\rightarrow\) "Complicated" function \(\Rightarrow\) "Heavy" calculation \(\rightarrow\) Even if result is "simple"
Finite (Number) Fields: \[\text{von Manteuffel, Schabinger, 2014}\]

* MAP \mathbb{Q}^m into \mathbb{F}_p^m and try to reconstruct result!

* If cardinality p is smaller than CPU's word size (2^{64}) operations will be very fast.

\[
\frac{m}{m} = l \mod p
\]

$X_i \rightarrow Y_i = I(X_i) \rightarrow f(Y_i) \rightarrow t \rightarrow \frac{p}{q}$

“Lift” back operation, or rational reconstruction works well if $\frac{p}{q}$ is “simple” enough (or more \mathbb{F}_p's needed!).
INTEGRAL COEFFS AS FUNCTIONS $\neq \varepsilon$:

$$A(l_e) = \sum_{\Gamma, i} C_{\Gamma, i} \frac{m_{\Gamma, i}(l_e)}{\prod_{k \in \Gamma} \rho_k(l_e)} \rightarrow C_{\Gamma, i} \text{ are functions of } x_k \text{ and } D = 4 - 2\varepsilon$$

Indeed, $C_{\Gamma, i}$ appears as rational functions of ε

$$C_{\Gamma, i} = \frac{\sum_j f_j(x_k) \varepsilon^{j+N}}{\sum_j f_j \varepsilon^{j+M}}$$

ε dependence comes from the structure of $m_{\Gamma, i}(l_e)$ and through linear algebra (”subtraction” procedure)
Thiéle's Interpolation Formula:

Every rational function can be written as a continued fraction.

\[
f(x) = \frac{\sum_{r=0}^{R} n_r x^r}{\sum_{r'=0}^{R'} d_r x^{r'}} = a_0 + \frac{x - y_0}{a_1 + \frac{x - y_1}{a_2 + \frac{x - y_2}{\ldots + \frac{x - y_{N-1}}{a_N}}}}
\]

* Determine \(a_i \) by evaluating \(f(y_i) \) (\(y_i \) random)
* Stop when \(f(y_{i+1}) \) matches interpolated value (+ extra check)
* Through only field operations recover rational function

(FF's result can be lifted to \(\mathbb{Q} \))

See also [Peraro, arXiv:1608.01902] for multi-variate case
Removing Lower-Order Information

\[A_R^{(1)} = \frac{1}{\varepsilon^2} A_R^{(6)} + O(\varepsilon^0) \]

\[A_R^{(2)} = \frac{1}{\varepsilon^2} A_R^{(1)} + \frac{1}{\varepsilon} A_R^{(2)} + O(\varepsilon) \]

Define Remainder:

\[R^{(1)} = A_R^{(1)} - \frac{1}{\varepsilon} A_R^{(6)} + O(\varepsilon) \]

\[R^{(2)} = A_R^{(2)} - \frac{1}{\varepsilon} A_R^{(1)} - \frac{1}{\varepsilon^2} A_R^{(2)} + O(\varepsilon) \]
By physical constraints:

\[\gamma^+(s_{ij}) = \frac{\eta^+(s_{ij})}{\prod_{k} \frac{d\phi_k}{d\phi_k(s_{ij})}} \]

\[\mapsto \text{Polynomial} \]

\[\text{\rightarrow Special function's argument} \]

\[\text{\rightarrow Alphabet letter} \]

Determining \(\prod_{k} \frac{d\phi_k}{d\phi_k(s_{ij})} \) can be achieved by

univariate reconstruction in curve \(s_{ij}(\tau) \)

and polynomial division!

Multivariate reconstruction reduced to determination of the polynomials \(\eta^+_{k}(s_{ij}) \)

\[\rightarrow \text{Simplify by multivariate partial fractions!} \]

\[\text{RELATED TO} \]

\[\text{MULTIVARIATE ALGAPDT} \]

\[\text{[Heller, M. Haubenfeld]} \]
Outline

Introduction

State-of-the-art and future needs

A touch on techniques

Our survey & outlook
As part of our white paper [arXiv:2204.04200] we performed a survey about resources needed to complete recent state-of-the-art calculations for precision collider phenomenology.

We received information about calculations appearing in 53 scientific publications.

Example questions:

- What computational resources did you employ?
- How many PhD/PD years went into this project?
- What kind of grow do you expect for the resources needed in your mid-term projects?
As part of our white paper [arXiv:2204.04200] we performed a survey about resources needed to complete recent state-of-the-art calculations for precision collider phenomenology.

We received information about calculations appearing in 53 scientific publications.

Example questions:

- What computational resources did you employ?
- How many PhD/PD years went into this project?
- What kind of grow do you expect for the resources needed in your mid-term projects?

We thank them all as well as their collaborators! Samuel Abreu, Bakul Agarwal, Konstantin Asteriadis, Simon Badger, Matteo Becchetti, Marco Bonetti, Federico Buccioni, Luca Buonocore, Fabrizio Caola, Gudrun Heinrich, Alexander Huss, Stephen P. Jones, Stefan Kallweit, Matthias Kerner, Matteo Marcoli, Javier Mazzitelli, Johannes Michel, Sven Moch, Marco Niggetiedt, Costas Papadopoulos, Mathieu Pellen, Rene Poncelet, Jérémie Quarroz, Luca Rottoli, Gabor Somogyi, Qian Song, Vasily Sotnikov, Matthias Steinhauser, Gherardo Vita, Chen-Yu Wang, Stefan Weinzierl, Marius Wiesemann, Malgorzata Worek, Tongzhi Yang and YuJiao Zhu.
Some of the Feedback

- **HPC usage** a standard in our community. For the first time **HPC systems** used for CAS!
- Typical project requires 2-5 PhD/PD years to complete, and often rely on a decade (or more) of developments
- Numerical and semi-numerical methods on the forefront, we forecast significant rise. **GPU usage** not spread out
- **HPC usage** a standard in our community. For the first time HPC systems used for CAS!
- Typical project requires 2-5 PhD/PD years to complete, and often rely on a decade (or more) of developments
- Numerical and semi-numerical methods on the forefront, we forecast significant rise. **GPU usage** not spread out
- Estimate of HPC usage:
Outlook

- Settling the SM status at the (under) 1% level will be one great achievement of the LHC, and we look forward to even more!

- After this Snowmass cycle we might expect as common place matched $2 \rightarrow 3$ NNLO studies, fixed order $2 \rightarrow 2$ N3LO calculations and even N4LO results

- Significant investment is required to deliver the techniques, algorithms and implementations needed to achieve that

- The amplitudes community is very vibrant and continuous advances in our understanding of field theory will keep driving progress in precision collider phenomenology
Outlook

- **Settling the SM status** at the (under) 1% level will be one great achievement of the LHC, and we look forward to even more!

- After this Snowmass cycle we might expect as common place matched $2 \to 3$ NNLO studies, fixed order $2 \to 2$ N^3LO calculations and even N^4LO results

- Significant investment is required to deliver the techniques, algorithms and implementations needed to achieve that

- The amplitudes community is very vibrant and continuous advances in our understanding of field theory will keep driving progress in precision collider phenomenology