High performance SRF accelerator structures development Our goal is development of high Q_0 and E_{acc} cavities at reduced cost in a sustainable way using medium grain niobium with relaxed specifications #### Present limitations: - With high RRR one could build cavities with gradients up to \sim 42 MV/m but low Q₀ - Alloying with nitrogen and titanium improves the Q₀ but lowers the E_{acc}, reasons are not understood #### What do we know; - In general, the cavities mostly quench at high magnetic field region (near the equator) due to first flux penetration where residual stresses are high and copious hydrogen is present - Magnetic flux reduces thermal conductivity and increases specific heat there by reducing the thermal diffusivity considerably - We do not have thermal conductivity and specific heat data for niobium with different interstitials and process conditions ### R&D proposal; - Identify collaborators with Quantum Design PPMs with thermal conductivity and specific heat options (~1M\$) - Hire a graduate student and generate the required data so that process conditions could be optimized to achieve high performance accelerator structures reliably # Temperature and magnetic field dependence of heat capacity of superconducting large grain Niobium During cavity operation heat is deposited in the sc layer of ~60 nm $\,\tau$ (1.5 GHz) ~ 6.6×10⁻¹⁰ s Thermal diffusivity_{2K} α_{2K} ~ k/pC = 2333 cm² s⁻¹