High performance SRF accelerator structures development

Our goal is development of high Q_0 and E_{acc} cavities at reduced cost in a sustainable way using medium grain niobium with relaxed specifications

Present limitations:

- With high RRR one could build cavities with gradients up to \sim 42 MV/m but low Q₀
- Alloying with nitrogen and titanium improves the Q₀ but lowers the E_{acc}, reasons are not understood

What do we know;

- In general, the cavities mostly quench at high magnetic field region (near the equator) due to first flux penetration where residual stresses are high and copious hydrogen is present
- Magnetic flux reduces thermal conductivity and increases specific heat there by reducing the thermal diffusivity considerably
- We do not have thermal conductivity and specific heat data for niobium with different interstitials and process conditions

R&D proposal;

- Identify collaborators with Quantum Design PPMs with thermal conductivity and specific heat options (~1M\$)
- Hire a graduate student and generate the required data so that process conditions could be optimized to achieve high performance accelerator structures reliably

Temperature and magnetic field dependence of heat capacity of superconducting large grain Niobium

During cavity operation heat is deposited in the sc layer of ~60 nm $\,\tau$ (1.5 GHz) ~ 6.6×10⁻¹⁰ s Thermal diffusivity_{2K} α_{2K} ~ k/pC = 2333 cm² s⁻¹

